Enhance and Streamline IT Processes

You can’t be assured of a competitive advantage by just buying the latest technology. Your top competitor can easily match that feat by simply spending as much on the same tools. To be always at least a step ahead, you’ll need to perform tweaks on your IT processes aligned with the strengths of your organisation.

IT solutions are like a pair of sneakers. If they fit perfectly, they’ll help you run the extra mile. If they don’t, you can develop blisters faster than you can reach a single mile.

In all our efforts to enhance and streamline your IT processes, we’ll start by looking at all your logistical advantages, limitations, and objectives to determine which technologies suit you best. Once we’ve obtained them, we’ll perform the appropriate customisation to make them perform optimally under the conditions unique to your organisation.

Below are just some of the enhancements we can apply to your organisation:

  • Put up application and systems monitoring to identify bottlenecks and underutilised resources in your IT infrastructure.
  • Propose areas where you can plough back the generated savings to further improve your ROI.
  • Take scalability into consideration when pushing for certain IT investments to ensure that the IT solution will work for your organisation not only today but even as your organisation grows.
  • Introduce mobile-capable enterprise-class IT solutions that allow seamless collaboration between team members working at different locations on the globe so that pressing matters can be resolved and decisions can be arrived at as quickly as possible.
  • Integrate Business Intelligence into your IT system so that massive collections of data can be processed into insightful information which managers can draw on to make intuitive decisions.
  • Introduce avant-garde solutions, like virtualisation and infrastructure sharing, which may require large scale changes but can also significantly reduce operational costs.

Find out how we can increase your efficiency even more:

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

Shared Services ? Are They A Good Idea

Things happen fast in business and we need to stay on top. It does not seem long ago that some enterprises were still hands-on traders or artisans with a few youngsters to help out. People like that did not do admin and their accounting was a matter of making sure there was enough money in the jar.

When Wal-Mart’s Sam Walton took over his first shop in 1945 things had moved on from there, although he did still deal directly with his customers. When he died his legacy was 380,000 jobs, and a business larger than most economies. So there?s plenty we can learn from how he grew his business.

One of Sam?s secrets was his capacity to centralise what needed gathering together, while empowering store managers to think independently when it came to local conditions. His regional warehouses had individual outlets clustered around them within one day?s drive each. This shared service eliminated 90% of safety stock and released capital for expansion.

Wal-Mart took sharing services a step further in February 2006, when it centralised accounts payable, accounts receivable, general accounting and human resources administration at Wal-Mart Stores and Sam?s Clubs in the U.S. and Puerto Rico. The objective was to bring costs down, while allowing local managers more time to focus on their business plans and other initiatives. As a further spin-off, Wal-Mart was able to integrate its data on a single SAP platform and eliminate significant roadblocks.

This is an excellent example of sharing services by creating own centres of excellence.? Of course, this is not the only business possibility. Other corporates have successfully completely outsourced their support activities, and Wal-Mart has no doubt had a variety of similar offers too. But, is the Wal-Mart picture entirely rosy, or is there a catch?

The Association of Chartered Certified Accountants has indicated that top talent may be the loser globally. This is because the Wal-Mart model removes many challenges through standardisation, and offers less scope for internal promotion as a result. Language and cultural differences may also have a long-term detrimental effect on the way the departments work well together.

Local outsourcing ? this is the business model where several firms engage a shared service provider independently- may hence prove to be a more malleable option for smaller companies. It often makes more sense to hunt down made-to-order services. Offerings such as the professional support we offer on this site.

Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?