Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

What ISO 14001 Status did for Cummins Inc.

Cummins manufactures engines and power generation products, and has been a household name almost since inception in 1919. It sells its products in over 300 countries, through approximately 6,000 dealerships employing 40,000 people. Because its product line runs off fossil fuel it is under steady pressure to display a cleaner carbon footprint.

Cummins decided to go for the big one by qualifying for ISO 14001 certification. This is a subset of a family of standards relating to managing environmental impact while complying with all applicable legislation. In this sense, it is similar to the ISO 9000 quality management system, because it focuses on how products are produced (as opposed to how those products perform). Compliance with ISO 14001 was a doubly important goal, because it is part of the European Union?s Eco Management and Audit Scheme and fast becoming mandatory on suppliers to governments.

The qualification process follows the well-established principle of plan, do, check, act. It begins with gap analysis to detect materials and processes that affect the environment. This is followed by implementation of necessary changes affecting operations, documentation, emergency strategies and employee education. The third step involves measuring and monitoring performance. Finally, the project moves into a phase of ongoing maintenance, and continuous improvement as circumstances change.

In Cummins case, the project was almost worldwide and called for environmental, health and safety reporting throughout the organisation. The information was shared via a globally accessible document repository, and then processed centrally at the head office in Columbia, Indiana USA.

Measuring environmental performance almost inevitably has other benefits that make it doubly worthwhile. Speaking at the 2014 National Safety Council Congress after receiving the top award for excellence, Cummins chairman and ceo Tom Linebarger commented on a journey that was ?nothing short of amazing? yet wasn’t even a ?pathway to the finish line?.

?All of us feel like we have way more to do to make sure that our environment is as safe as it could be,? he added, ?so that our sustainability footprint is as good as it can be and that we continue to set more aggressive goals every year. That’s just how we think about it.? Linebarger concluded.

If you are taking your company on a journey to new heights of environmental excellence, then you should consider choosing ecoVaro as your travelling companion. We are environmental management specialists and have proprietary software geared to process your data. We also have a wealth of experience, and a treasure chest of roadmaps to help you achieve your goal.

How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?