Measure it to manage it with smart meters

Measure it to manage it. This saying applies perfectly to energy management. Effectively managing energy use is virtually impossible with unreliable measurement devices in place or worse still, no measurements at all. Smart meters are a smart way to measure energy and water usage giving you more control over the amount of energy or water usage.

Smart energy meters:
Smart meters are indeed a smart way to get insight into your energy use which brings more security and a better environment. They can also enable you to get Smart Energy Reports that are a personalised guide to energy efficiency.

Other benefits of smart meters:

? You are able to generate simple graphs and charts showing you where you use your energy and money

? Consumption of gas and electricity is broken down. This implies that one can be able to view their spending at a glance

? Smart meters track consumption on a monthly basis enabling you to compare your own consumption against other similar households

? By tracking energy consumption and spending over time, one can be able to view the history and assess the impact of their energy efficiency measures over a particular period

Smart water meters:
Smart meters are not only used for measuring energy use, they are also used to measure water usage efficiency. Water efficiency is essential for management of sustainable water resources.

Water resources have been diminishing over time posing a challenge for water users and water suppliers to seriously look for ways to manage water efficiency. The need for accurate, adequate and reliable measurement and monitoring practices of water consumption in organisations can therefore not be overlooked.

Timely collection and analysis of water use data, and relaying this data in a timely manner to the water user, can result in significant changes in water use behaviour. Other benefits include instant detection of areas where water wastage is occurring e.g. leakages hence action is taken to save water. Similar to energy data, water data collected by smart metering systems is also vital in designing water efficiency and recycling systems as well as the improvement of demand management policies and programs.

The use of smart meters to monitor water consumption enables users to analyse, and interpret the data collected. This feedback enables users to change their behaviours.

Check our similar posts

Without Desktop Virtualisation, you can’t attain True Business Continuity

Even if you’ve invested on virtualisation, off-site backup, redundancy, data replication, and other related technologies, I?m willing to bet your BC/DR program still lacks an important ingredient. I bet you’ve forgotten about your end users and their desktops.

Picture this. A major disaster strikes your city and brings your entire main site down. No problem. You’ve got all your data backed up on another site. You just need to connect to it and voila! you’ll be back up and running in no time.

Really?

Do you have PCs ready for your employees to use? Do those machines already have the necessary applications for working on your data? If you still have to install them, then that’s going to take a lot of precious time. When your users get a hold of those machines, will they be facing exactly the same interface that they’ve been used to?

If not, more time will be wasted as they try to familiarise themselves. By the time you’re able to declare ?business as usual?, you’ll have lost customer confidence (or even customers themselves), missed business opportunities, and dropped potential earnings.

That’s not going to happen with desktop virtualisation.

The beauty of?virtualisation

Virtualisation in general is a vital component in modern Business Continuity/Disaster Recovery strategies. For instance, by creating multiple copies of virtualised disks and implementing disk redundancy, your operations can continue even if a disk breaks down. Better yet, if you put copies on separate physical servers, then you can likewise continue even if a physical server breaks down.

You can take an even greater step by placing copies of those disks on an entirely separate geographical location so that if a disaster brings your entire main site down, you can still gain access to your data from the other site.

Because you’re essentially just dealing with files and not physical hardware, virtualisation makes the implementation of redundancy less costly, less tedious, greener, and more effective.

But virtualisation, when used for BC/DR, is mostly focused on the server side. As we’ve pointed out earlier in the article, server side BC/DR efforts are not enough. A significant share of business operations are also dependent on the client side.

Desktop virtualisation (DV) is very similar to server virtualisation. It comes with nearly the same kind of benefits too. That means, a virtualised desktop can be copied just like ordinary files. If you have a copy of a desktop, then you can easily use that if the active copy is destroyed.

In fact, if the PC on which the desktop is running becomes incapacitated, you can simply move to another machine, stream or install a copy of the virtualised desktop there, and get back into the action right away. If all your PCs are incapacitated after a disaster, rapid provisioning of your desktops will keep customers and stakeholders from waiting.

In addition to that, DV will enable your user interface to look like the one you had on your previous PC. This particular feature is actually very important to end users. You see, users normally have their own way of organising things on their desktops. The moment you put them in front of a desktop not their own, even if it has the same OS and the same set of applications, they?ll feel disoriented and won’t be able to perform optimally.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

How Ventura Bus Lines cleaned up its Act

Melbourne?s Ventura Bus Lines grew from a single bus in 1924 to a mega 308-vehicle fleet by the start of 2014. The family-owned provider has always been community centric; when climate-change became an issue it took quick and urgent action. As a result it now stands head and shoulders above many others. Let’s take a closer look at some of its decisions that made the difference.

The Important Things to Focus On

Ethanol Buses ? Ventura is the only Australian company that uses ethanol power produced from sugar cane for experimental public transport. It compares emissions within its fleet, and knows that these produce significantly less CO2 while also creating jobs for locals.

Electric Buses ? The company has been operating electric buses since 2009. These carry 42 seated among a total 68 passengers. The ride is smooth thanks to twin battery banks kept charged by braking and forward momentum. When required, a two-litre VW engine kicks in automatically.

Ongoing Driver Training ? Ventura provides regular retraining sessions emphasising safe, environmentally-friending operations. Drivers are able to see their fuel consumption and carbon emissions online and experiment with ways to improve these.

Bus U-Turns ? The capacity to measure throughput convinced the company to abandon the principle that buses don’t do U-Turns for safety?s sake. Road re-engineering made this possible in a busy downtown street. This reduced emissions equivalent to 4,000 cars and reduced vehicle downtime for servicing.

Increased Business – These initiatives allowed Ventura Bus Lines to improve its service as customers experience it. This led to an uptake in patronage and a corresponding downturn in the number of passenger car hours. The pleasure of travelling green no doubt contributed to this.

How Measuring Made the Difference

Ventura Bus Lines is big business. Its 308 buses operate out of 5 depots, cover 31% of the metropole, and transport close to 70,000 passengers on average daily which is no minor task. The ability to track, measure and analyse carbon emissions throughout the area has earned it compliance with National Greenhouse Energy Reporting Threshold 1 legislation.

It also uses the data to re-engineer bus routes to further reduce fuel consumption, energy consumption and operating costs. It’s amazing how measuring is affecting its bottom line, and the health of the Melbourne community at large.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?