How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Renewable energy – Is it a common man’s cup of tea?
I came across an article on a young graduate in renewable energy engineering. The fellow was doing technical sales and marketing jobs for renewable energy products though he felt that as a graduate, he ought to be doing more than just sales. His, sentiments, I can relate with but again thinking about the field of renewable energy, how many people understand what it is, its importance/ benefits, how to acquire it, its installation, costs etc.? Renewable energy is energy generated from natural resources. The renewable energy sources include sunlight, wind, rain, tides, geothermal heat and various forms of biomass. These sources are renewable naturally and continuously replenished, therefore this energy cannot be exhausted. Renewable energy technologies range from solar power, wind power, hydroelectricity/micro hydro, biomass and bio-fuels for transportation. Back to the aspiring young professional who felt that his place in the renewable energy sector lies in doing strategies and coming up with new products-the advice fronted to him was that doing technical sales is the best job for engineers, as it helps them impact on users of their products. Sales entail interacting with customers and knowing their needs so that the product features can be enhanced to suit the customer?s needs. Now, that is brilliant and accurate advice. It is however important to take into consideration that renewable energy is not a common man?s cup of tea and right now the focus all over the world is to build green economies. To me the need for more and more people to understand the benefits, savings and cost of renewable energy cannot be overemphasised. Effort should be made to keep marketing of renewable energy products/ services simple and conversational by avoiding use of acronyms or jargon explaining about operational details. More impact can be made if a marketing rather than technical sales approach is used. Technical sales have been described as boring (can be used as a sleeping aid), tends to use extensive vocabulary, jargon and acronyms that product users cannot relate with and tends to discuss the products technical aspects as opposed to the benefits to the customer. Fun should be created out of all this by making things simple and demonstrating cost savings and benefits of renewable energy.
Spend more to reduce costs?

It is becoming increasingly important to not to analyse energy consumption for all utility types, be it electricity, gas, water, heat, renewables, oil etc. The bottom line is both operational efficiency and utility costs monitoring. In the long run, these are management strategies designed to drive energy costs downwards as a continuous improvement cycle and as a measure of reducing carbon emissions.

It is also getting increasingly easier for organisations reduce energy use and achieve this goal using technology without having to “remember” to do it yourself. Organisations can never go wrong by investing in energy management software. There are varied software options to choose from depending on the organisational objective.
Some of the energy management objectives that organisations may need to meet are:

? Establishing baseline energy use

? Carrying out Energy audits

? Monitoring and measuring energy performance against the energy policies of an organisation and objectives

? Achieving energy certification
Energy management software?s come in handy when an organization wishes to achieve either of the above objectives.

Use of energy management software?s also assists organisations in measurement and verification of energy consumption as well as Monitoring and Targeting. Measurement and verification is where a company quantifies energy consumption beforehand (baseline energy use) and after energy consumption measurements are implemented in order to verify and report on the level of savings actually achieved.

Organisations that wish to verify the energy savings achieved by building retrofits can use energy management software?s. This is an important objective for companies that wish to either satisfy internal financial accounting and reporting requirements, or to meet the terms of third-party contracts for project implementation and management. Monitoring and targeting is also made easier by use of software. This is critical as a management technique, regardless of whether an organisation has specific facility retrofits in order to keep operations efficient and to monitor utility costs.
Overall, an investment in energy management software, is worthwhile in the achievement of management strategies designed to drive energy costs downwards as a continuous improvement cycle.

Eck Industries Sheds Fresh Light

William Eck began his business in 1948 in a 650m2 garage building. The aluminium foundry prospered, and now has an 18,500m2 factory in Manitowoc, Wisconsin employing 250 people casting a variety of casings. Like high-tech industries around the globe it needs effective illumination. After it measured its carbon footprint, it realised it needed energy efficient lighting too.

When Eck Industries began its review it had around 360 high-pressure sodium lights throughout the plant. Their operating cost was substantial. After taking independent advice from an independent agency they realised they needed to replace these with more energy-efficient fluorescent lights that consume half as much energy.

The feasibility team conducted performance tests to determine the optimum solution. After selecting enclosed, gasketed and waterproof T8 fluorescents (available in G13 bipin, single pin and recessed double contacts) they collaborated with the supplier to calculate the best combination of 4 and 6 bulb fixtures.

The fittings they chose cost $60,000 plus $10,000 installation. However a $33,000 energy rebate wrote down 47% of this immediately. They achieved further energy savings by attaching motion sensors to lights over low-traffic walkways.

The retrofit was a huge success, with an 8 month payback via a direct operating saving of $55,000 a year. Over and above enhanced illumination Eck Industries slashed 674,000 kilowatt hours off its annual lighting bill. During the 20 year design life, this equates to a total 13.5 million kilowatt hours. Other quantifiable benefits include 443 tons less carbon, 2 tons less sulphur dioxide, and 1 ton less nitrogen oxide per year.

Many companies face similar opportunities but fail to capitalise on them for a number of reasons. These may include not being aware of what is available, lacking technical insight, being short of working capital and simply being too busy to focus on them.

Eck Industries got several things right. Firstly, they consulted an independent specialist; secondly they trusted their supplier to provide honest advice, and thirdly they accepted that any significant saving is worth chasing down. Other spin-offs were safer, more attractive working conditions and an opportunity to take their foot off the carbon pedal. This is an excellent example of what is possible when you try.

If you have measured your illumination cost and are concerned about it (but are unsure what the metric means within the bigger picture) then Ecovaro offers online reports comparing it with your industry average, and highlights the cost-benefits of alternative lighting. 

Ready to work with Denizon?