How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Energy Savings Opportunity Scheme (ESOS): An Overview

Energy management is crucial to most businesses in the UK. This is primarily because energy usage substantially affects all organizations, whether large or small. The good news is that, energy costs can be controlled through improved energy efficiency. And this is exactly why Energy Savings Opportunity Scheme (ESOS) came into being ? to promote competitiveness among businesses.

Energy Savings Opportunity Scheme is the realisation of the UK Government’s ambition towards achieving the maximum potential of cost-effective energy in the economy. ESOS aims to stimulate innovation and growth, cut emissions and support a sustainable energy system.

ESOS at a Glance – Legal Perspective

The EU Energy Efficiency Directive took a major step forward on November 14, 2012 and headed towards establishing a framework to promote energy efficiency across various economic sectors. To interpret Article 8 of the Directive, the government has given birth to ESOS; requiring large enterprises to undergo mandatory energy audits and energy management systems by December 5, 2015 and at least every 4 years thereafter.

Large enterprises include UK companies that have more than 250 employees or those businesses whose annual turnover exceeds ?50 million and whose statement of financial position totals more than ?43 million. With this, over 7000 of the biggest companies in Britain will need to comply with ESOS as an approach to review their total energy use in buildings, business operations, transport and industrial processes.

Generally, ESOS is both an obligation and an opportunity. It is an obligation for the indicated target companies since they need to submit to additional regimes; focus on audit evidences; act in accordance to group structures and compliance; and observe limited penalties and note retention periods. Moreover, it is also an opportunity for companies to strive for more savings on energy projects; attempt to standardise their potential market; and effectively lower debt and legal costs.

ESOS Audits ? Looking Beyond

According to the Department of Energy and Climate Change (DECC), average first audit costs would be estimated at about ?17,000 and subsequent ones at around ?10,000. As expected, these audits will result in energy saving recommendations, of which companies need not proceed for a follow up; and substantially improve businesses in their energy management issues. DECC further states that every business that complies with ESOS could save an average of ?56,400 each year from an initial investment of ?17,000 only.

Currently, up to 6,000 UK businesses are already subject to existing CRC Carbon Reduction Scheme, Mandatory Carbon Reporting, Climate Change Levy and other compliance. This signifies that ESOS may overlap with prevailing energy efficiency legislation and may put additional pressure on energy administration. While this is true, however, ESOS holds extensive benefits. Although the scheme can be viewed as another costly compliance to environmental standards, ESOS goes straight to the bottom line and provides the organisation with competitive advantage. If large businesses act now and comply with it, they will be able to enjoy maximised payback in the long run.

Indeed, Energy Savings Opportunity Scheme is already here. It is mandatory with minimal investment. And all you have to do is act quickly, implement new improvements and earn more.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Saving Energy Step 1 ? Implementing a Management System

There has been much hype down the years regarding whether management is art or science. Thankfully, where people are concerned the pendulum has swung away from standard times in sweatshops in the west. However, when it comes to measuring physical things like harvest per square meter and the amount of energy consumed there is no substitute for scientific measurement, and this implies a system.

Managing energy cost and consumption down is like any other strategy. American engineer / statistician / management consultant W. Edwards Demming may have passed on in 1993. However he was as right as ever when he said:

  1. When people and organizations focus primarily on quality, this tends to increase and costs fall over time.
  1. However, when people and organizations focus primarily on costs, costs tend to rise and quality declines over time.

Demming believed that 90% of organizational problems arise from systems we put in place ourselves. This can be because we are so accustomed to them that we fail to notice when they are no longer relevant. The currently prevailing laissez faire towards energy is a case in point. What is managed improves and what is not, deteriorates. We know this. Let us take a look at how to apply this principle to energy management.

First, you need to get the subject out the closet and talk about it. How often do you do this is your boardroom, and how does energy rank against other priorities? Good governance is about taking up a position and following through on it. Here is a handy checklist you may like to use.

  • Do we use a consistent language when we talk about energy? Is it electricity, or carbon emitted (or are we merely fretting over cost).
  • How well engaged are we as a company? Looking up and down and across the organization are there points where responsibility stops.
  • How well have we defined accountability? Do we agree on key performance areas and how to report on them.
  • Are we measuring energy use at each point of the business? When did we last challenge the assumption that ?we’re doing okay?.
  • Have we articulated our belief that quality is endless improvement, or are we simply chasing targets because someone says we should.

A management system is a program of policies, processes and methods to ensure achievement of goals. The next blog focuses on tools and techniques that support this effort.

How Accenture Keeps Rolling Out Sustainability

Multinational management-consulting and technology-services company Accenture has a good eye for sniffing out new business, with 305,000 employees advancing its interests in more than 200 cities in 56 countries evidence. Last year, it netted US$30 billion profit that is a tidy sum of money in anybody?s books.

Accenture also practices what it preaches. This is maximum business efficiency within moral standards. It tracks its carbon emissions from its offices around the world. Being a technology services company it is unsurprising that it automated the process. Being management consultants it can drill down to finest detail in its search for continuous improvement.

As a forward-thinking company Accenture is committed to transplanting its business skills into other organizations, in order to drive higher performance and sustain greater profits in the long term. It works with clients across borders and industries to integrate sustainability into their business models, and find effective ways to lighten carbon footprints.

The City of Seattle in Washington is a case in point. Following a proud history of nature and energy conservation, it engaged Accenture in 2013 to help it reduce downtown power consumption by 25%. Other project members were Microsoft supplying software, the local power utility for technical advice, and a non-profit to set up a smart building program. The initiative uses cloud services to process the big data generated by a host of building management services, plus a multitude of sensors, controls and meters.

The project is vital for the City. It wants to continue expanding but needs to avoid another power plant polluting its skyline. At the time of writing, the pilot sites had proved successful and the program was rolling out. Seattle?s next challenge is to acquire 15% of its energy from renewable sources by 2020.

The smart building solutions Seattle trialled in five downtown buildings, had a further welcome spinoff; by reducing operating times, facility managers can look forward to extended equipment life and fewer maintenance downtimes. The green building philosophy is alive and well in the City of Seattle, driven both by necessity and vision.

It is a no longer as question of if – but when – other urban communities follow suit. EcoVaro believes it is time long due for individual companies to start enjoying lower energy costs plus the prospect of profitably trading carbon credits. The process begins with measuring what you have and identifying cost-effective savings.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?