How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

UK Government Updates ESOS Guidelines

Britain?s Environment Agency has produced an update to the ESOS guidelines previously published by the Department of Energy and Climate Change. Fortunately for businesses much of it has remained the same. Hence it is only necessary to highlight the changes here.

  1. Participants in joint ventures without a clear majority must assess themselves individually against criteria for participation, and run their own ESOS programs if they comply.
  2. If a party supplying energy to assets held in trust qualifies for ESOS then these assets must be included in its program.
  3. Total energy consumption applies only to assets held on both the 31 December 2014 and 5 December 2015 peg points. This is relevant to the construction industry where sites may exchange hands between the two dates. The definition of ?held? includes borrowed, leased, rented and used.
  4. Energy consumption while travelling by plane or ship is only relevant if either (or both) start and end-points are in the UK. Foreign travel may be voluntarily included at company discretion. The guidelines are silent regarding double counting when travelling to fellow EU states.
  5. The choice of sites to sample is at the discretion of the company and lead assessor. The findings of these audits must be applied across the board, and ?robust explanations? provided in the evidence pack for selection of specific sites. This is a departure from traditional emphasis on random.

The Environment Agency has provided the following checklist of what to keep in the evidence pack

  1. Contact details of participating and responsible undertakings
  2. Details of directors or equivalents who reviewed the assessment
  3. Written confirmation of this by these persons
  4. Contact details of lead assessor and the register they appear on
  5. Written confirmation by the assessor they signed the ESOS off
  6. Calculation of total energy consumption
  7. List of identified areas of significant consumption
  8. Details of audits and methodologies used
  9. Details of energy saving opportunities identified
  10. Details of methods used to address these opportunities / certificates
  11. Contracts covering aggregation or release of group members
  12. If less than twelve months of data used why this was so
  13. Justification for using this lesser time frame
  14. Reasons for including unverifiable data in assessments
  15. Methodology used for arriving at estimates applied
  16. If applicable, why the lead assessor overlooked a consumption profile

Check out: Ecovaro ? energy data analytics specialist 

Competencies, Roles and Responsibilities of Lead Assessors

Any organisation that opts for energy audits, Display of Energy Certificates and Green Deal Assessments needs a lead assessor to review the chosen ESOS compliance routes. The Derivative provides that energy audits should be carried out independently by qualified and accredited experts. Additionally, these audits should be implemented as well as supervised by independent authorities under the national legislation.

Lead assessors undertake several roles in ESOS assessments. He or she is the one responsible to take the lead of the entire assessment team, prepare the plan, conduct the meetings and submit the formal report to governing authorities. Nevertheless, selecting an appropriate lead assessor is an important element that every organisation should carefully consider.

Competencies Requirements of Lead Assessors

Lead assessors should be knowledgeable enough with in-depth expertise in carrying out energy efficiency assessment. They should also possess foundational, functional and technical competencies to deliver the task effectively. Likewise, consider the assessors? sector experiences, familiarity with your business? technologies and properties, and accreditation with prescribed standards.

As you choose your lead assessor, contemplate on the skills and qualifications that would give your organisation benefits.

Roles and Responsibilities of Lead Assessors

The business organisation is responsible for the overall legal ESOS compliance. Moreover, here are some of the roles and responsibilities that lead assessors should assume in ESOS assessments.

The lead assessor agrees on the audit methodologies that the organisation would undergo in new audits. He or she agrees with the ESOS participant regarding the audit timetable, sampling approach and visits required. It is also the lead assessor?s role to identify the opportunities on energy saving and assist in calculating the cost savings from the measures taken. During the ESOS audits, the lead assessor determines the energy use profiles, presents the recommendations and reviews the entire assessment as a whole. Furthermore, he or she should maintain the evidence pack of the ESOS to uphold the audit’s credibility, its findings and recommendations.

Finding Lead Assessors

Energy and environment professionals would only be able to demonstrate their expertise as lead assessors upon registering in a professional body accredited by the Environment Agency. Any business that needs a lead assessor is advised to check on the EA?s website to see the details of approved registers.

Lead assessors can either be in-house experts or external professionals. However, they should be able to provide proof of membership as an approved register to take the role of a lead assessor. If the organisation has an internal lead assessor, the company should then take the final ESOS assessment to two board-level directors that would sign the formal report.

Indeed, the lead assessor is an organisation’s partner when it comes to delivering great results. With good professional conduct and excellent management of an assessment team, the lead assessor can help achieve breakthrough energy efficiency strategies. More than anything else, the organisation will benefit from maximum energy savings opportunities ahead. Thus, every qualified business enterprise should invest in finding the best lead assessor to guide them towards success.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Mid-South Metallurgical cut Energy Use by 22%

Mid-South in Murfreesboro, Tennessee operates a high-energy plant providing precision heat treatments for high-speed tools – and also metal annealing and straightening services. This was a great business to be in before the energy crisis struck. That was about the same time the 2009 recession arrived. In no time at all the market was down 30%.

Investors had a pile of capital sunk into Mid-South?s three facilities spread across 21,000 square feet (2,000 square meters) of enclosed space. Within them, a number of twenty-five horsepower compressors plus a variety of electric, vacuum and atmospheric furnaces pumped out heat 27/7, 52 weeks a year. After the company called in the U.S. Department of Energy for assistance, several possibilities presented.

Insulate the Barium Chloride Salt Baths

The barium chloride salt baths used in the heat treatment process and operating at 1600?F (870?C) were a natural choice, since they could not be cooled below 1200?F (650?C) when out of use without hardening the barium chloride and clogging up the system. The amount of energy taken to prevent this came down considerably after they covered and insulated them. The recurring annual electricity saving was $53,000.

Manage Electrical Demand & Power

The utility delivers 480 volts of power to the three plants that between them consume between 825- and 875-kilowatt hours depending on the season. Prior to the energy crisis Mid-South Metallurgical regarded this level of consumption as a given. Following on the Department of Energy survey the company replaced the laminar flow burner tips with cyclonic burner ones, and implemented a number of other modifications to enhance thermal efficiency further. The overall natural gas reduction was 20%.

Implement Large Scale Site Lighting Upgrade

The 24/7 nature of the business makes lighting costs a significant factor. Prior to the energy upgrade this came from 44 older-type 400-watt metal halide fixtures. By replacing these with 88 x 8-foot (2.5 meter) fluorescent fittings Mid-South lowered maintenance and operating costs by 52%

The Mid-South Metallurgical Trophy Cabinet

These three improvements cut energy use by 22%, reduced peak electrical demand by 21% and brought total energy costs down 18%. Mid-South continues to monitor energy consumption at each strategic point, as it continues to seek out even greater energy efficiency in conjunction with its people.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?