How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

How SOA can help Transformation

Undoubtedly, today’s business leaders face myriad challenges ranging from fierce market competition to increasing market unpredictability. In addition, the modern consumer is more informed and in control of what, where and how they purchase. Couple these challenges with effects of globalization, and you will appreciate that need for business transformation is more of a necessity than a privilege.

As recent business trends show, top companies are characterized by organizational and operational agility. Instead of being shaken by rapid technological changes and aftershocks associated with market changes, they are actually invigorated by these trends. In order to survive in these turbulent times, business leaders are opting to implement corporate transformation initiatives to develop leaner, more agile and productive operations. In line with this, service oriented architecture (SOA) has emerged as an essential IT transformation approach for implementing sustainable business agility.

By definition, service oriented architecture is a set of principles and techniques for developing and designing software in form of business functionalities. SOA allows users to compile together large parts of functionality to create ad hoc service software entirely from the template software. This is why it is preferred by CIOs that are looking to develop business agility. It breaks down business operations into functional components (referred to as services) that can be easily and economically merged and reused in applicable scenarios to meet evolving business needs. This enhances overall efficiency, and improves organizational interconnectivity.

SOA identifies shortcomings of traditional IT transformation approaches that were framed in monolithic and vertical silos all dependent on isolated business units. The current business environment requires that individual business units should be capable of supporting multiple types of users, multiple communication channels and multiple lines of business. In addition, it has to be flexible enough to adapt to changing market needs. In case one is running a global business enterprise, SOA-enabled business transformation can assist in achieving sustainable agility and productivity through a globally integrated IT platform. SOA realizes its IT and business benefits by adopting a design and analyzing methodology when developing services. In this sense a service consists of an independent business unit of functionality that is only available through a defined interface. Services can either be in the form of nano-enterprises or mega-enterprises.

Furthermore, with SOA an organization can adopt a holistic approach to solve a problem. This is because the business has more control over its functions. SOA frees the organization from constraints attributed to having a rigid single use application that is intricately meshed into a fragmented information technology infrastructure. Companies that have adopted service oriented architecture as their IT transformation approach, can easily repurpose, reorganize and rescale services on demand in order to develop new business processes that are adaptable to changes in the business environment. In addition, it enables companies to upgrade and enhance their existing systems without incurring huge costs associated with ‘rip and replace’ IT projects.

In summary, SOA can be termed as the cornerstone of modern IT transformation initiatives. If properly implemented great benefits and a sharp competitive advantage can be achieved. SOA assists in transforming existing disparate and unconnected processes and applications into reusable services; creating an avenue where services can be rapidly reassembled and developed to support market changes.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Transformation to a process based organisation

Today’s global marketplace rewards nimble organisations that learn and reinvent themselves faster than their competition. Employees at all levels of these organisations see themselves as members of teams responsible for specific business processes, with performance measures tied to the success of the enterprise. As team members, they are “owners” of the process (or processes) to which they are assigned. They are responsible for both the day to day functioning of their process(s), and also for continuously seeking sustainable process improvements.

Transforming a traditionally designed “top down control” enterprise to a process-based organisation built around empowered teams actively engaged in business process re-engineering (BPR) has proven more difficult than many corporate leaders have expected. Poorly planned transformation efforts have resulted in both serious impacts to the bottom line, and even more serious damage to the organisation’s fabric of trust and confidence in leadership.

Tomislav Hernaus, in a publication titled “Generic Process Transformation Model: Transition to Process-based Organisation” has presented an overview of existing approaches to organisational transformation. From the sources reviewed, Heraus has synthesised a set of steps that collectively represent a framework for planning a successful organisational change effort. Key elements identified by Hernaus include:

Strategic Analysis:

The essential first step in any transformation effort must be development of a clear and practical vision of a future organisation that will be able to profitably compete under anticipated market conditions. That vision must be expected to flex and adjust as understanding of future market conditions change, but it must always be stated in terms that all organisational members can understand.

Identifying Core Business Processes:

With the strategic vision for the organisation in mind, the next step is to define the core business processes necessary for the future organisation to function. These processes may exist across the legacy organisation’s organisational structures.

Designing around Core Processes:

The next step is development of a schematic representation of the “end state” company, organised around the Core Business Processes defined in the previous step.

Transitional Organisational Forms/ Developing Support Systems:

In his transformation model, Hernaus recognises that information management systems designed for the legacy organisation may not be able to meet the needs of the process management teams in the new organisation. Interim management structures (that can function with currently available IT system outputs) may be required to allow IT professionals time to redesign the organisation’s information management system to be flexible enough to meet changing team needs.

Creating Awareness, Understanding, and Acceptance of the Process-based Organisation:

Starting immediately after the completion of the Strategic Analysis process described above, management must devote sufficient resources to assure that all organisation members, especially key managers, have a full understanding of how a process-based organisation functions. In addition, data based process management skills need to be provided to future process team members. It is not enough to schedule communication and training activities, and check them off the list as they are completed. It is critical that management set behavioural criteria for communication and training efforts that allow objective evaluation of the results of these efforts. Management must commit to continuing essential communication and training efforts until success criteria are achieved. During this effort, it may be determined that some members of the organisation are unlikely to ever accept the new roles they will be required to assume in a process-based organization. Replacement of these individuals should be seen as both an organisational necessity and a kindness to the employees affected.

Implementation of Process Teams:

After the completion of required training AND the completion of required IT system changes, process teams can be formally rolled out in a planned sequence. Providing new teams with part time support by qualified facilitators during the firsts weeks after start-up can pay valuable long term dividends.

Team Skill Development and Continuous Process Improvement:

Providing resources for on-going skill development and for providing timely and meaningful recognition of process team successes are two keys for success in a process-based organisation. Qualified individuals with responsibility for providing training and recognition must be clearly identified and provided with sufficient budgetary resources.

The Hernaus model for transformation to a process based organisation is both well thought out and clear. His paper provides an ample resource of references for further study.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Energy efficiency- succeed and benefit

Energy is neither created nor destroyed; it is only transformed. This being the law of conservation of energy, and given that the process of transforming energy is inefficient resulting in loss of usable energy in the process of transforming one form of energy into another form, Energy Efficiency finds a home.
Talking of Energy efficiency, think of how much useful energy can be obtained from a system or a particular technology. It is also about the use of technology that requires a lesser amount of energy to carry out the same task.

Energy efficiency is the responsibility of both demand side and supply side. Supply-side energy efficiency refers to a set of actions taken to ensure efficiency through the electricity supply chain. Supply side efficiency measures are about efficiency in electricity generation; be it operation and maintenance of existing equipment or upgrading existing equipment with state-of-the-art energy-efficient generating equipment.

The demand side energy efficiency on the other hand refers to the actions taken to use less/demand less energy. Think of less energy usage in relation to improvement of energy efficiency in buildings, solar water heaters, energy efficient lighting systems such as Compact Fluorescent Lamps, conducting energy audits to identify potential energy saving opportunities, efficient water heating systems and the list is endless.

Success of energy efficiency is a win ? win to YOU-ME-US – the energy consumers, to THEM the energy producers and suppliers and to our precious ENVIRONMENT.
Gain to energy suppliers: – Less energy usage and better energy usage patterns among consumers consequently reduces the customer load which reduces losses on the supply side. Less energy loss creates capacity on the system to serve more customers.

Gain to you-me-us: – Less energy usage and better energy usage patterns Benefits the customer through reduced Electricity bills / $ savings through lower bills.

Benefits to the environment: – Usage of less energy reduces use of fossil fuels, hence reduction in GHG emissions hence conserving our environment. Companies look at means to make rational use of their least efficient generating equipment. The objective is to improve the operation and maintenance of existing equipment or upgrade it with state-of-the-art energy-efficient technologies. Some companies have on-site electricity generation alternatives and thus tend to consider the supply side in addition to demand-side energy efficiency.

Ready to work with Denizon?