A Definitive List of the Business Benefits of Cloud Computing – Part 2

Improves cash flow

The capital investment you put into an on-premise IT infrastructure is normally based on a long-range forecast of what your highest computing demands will be. But what if, as they often do, the estimates turn out to be too high? Then you’ll have to bear with the huge depreciation cost or monthly amortisation of a grossly underutilised asset for the next couple of years.

That’s why a cloud-based IT infrastructure is much better. With its on-demand, utility-based pricing model, cloud solutions provide companies with clearer financial visibility. You spend on something you’ve already fully utilised, not something you only hope to fully utilise in the future.

How exactly does cloud computing’s on-demand, utility-based pricing work? Well, it’s really very similar to the way you pay for electricity. Let me give you an example. In Amazon’s EC2 cloud offering, consumers are billed on what they call a per instance-hour basis.

Meaning, if some of your servers aren’t needed at night and only need to run 10 hours a day, then you can stop those server instances when the day is done. When you receive your bill, ?you’ll be charged the cost of only 10 hours per day x the number of days those servers were operational.

The advantages of OPEX-based IT spending gets even better when we start talking about businesses that experience sudden spikes or seasonal spikes in consumer demand as in the case of retail, marketing, logistics and others. If you’re running any of these businesses and the demand shoots up ?say during the Christmas season, you can readily scale up your servers, memory, storage, and other computing resources to the required capacity. Then when the season ends and demand goes back to normal, you can just as easily release those resources that are no longer needed.

demand and capacity - cloud infrastructure

Compare that with a traditional IT infrastructure wherein you’d have to predict the highest possible computing demand for the next Christmas season and then build an infrastructure that can satisfy it. During the high months, your infrastructure may come out fully utilised. But what about the rest of the year after that?

demand and capacity - traditional IT infrastructure

Since cloud services are delivered and consumed on-demand, you’ll have more cash on hand than if you had invested in an on-premise IT infrastructure. That means more money to finance other operating expenses or other endeavors like Business Intelligence and analytics, marketing projects, sales incentives, IT innovations, store or office expansions, and many others.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Field Service Organisations should use Digital Forms

For many Organisations, making use of paper based forms, is a common practice and method for collecting data and recording transactions. Whether it be for producing Quotations, Invoices or even getting sign off on completed jobs.

Paper based forms and documents have been the main stay of office communication and productivity for over 200 years. Paper-based forms are used to create anything from Invoices, Receipts, Purchase Orders, Contracts to the humble internal memo!

Paper-based forms radically improved productivity, efficiency and compliance by enabling people to create paper based instructions and enabling others to add additional information as required.

Over the past 3 decades or so, modern business environments have gradually been evolving towards the concept of the Paperless Office, resulting in the humble Paper based document migrating to a Digital Counterpart. The ease of availability of various Word Processing and Spreadsheet software products and cheap and easy data storage capacity have resulted in the Proliferation of thousands if not millions of files and documents being stored somewhere on the Company’s IT infrastructure.

People often create Digital Templates of forms that may be printed off and supplied to staff to complete using Pen and Paper or electronically. The data collation and reporting is often process

Often when conducting Operational Reviews, it is commonly found that the processing and analysing paper based forms is the least productive, efficient and profitable areas of business, although it is often vitally important.

Benefits of using digital forms for data collection

The ability to collect and analyse data effectively is increasingly important to businesses. Companies gather, examine, process and build reports on large volumes of data. Traditionally, they have deployed mail surveys, telephone interviews, door-to-door interviews as methods to collect information. With the ongoing digitisation, these procedures have become old fashioned.The digital transformation is changing many business operations at a high speed and a great deal of processes that were executed manually are now accomplished using digital methods.

Technology has had a major impact on how to approach data research and has provided researchers new tools that have transformed and improved data collection and analysis. The pace of change requires companies to be able to react quickly and adapt themselves to changing demands from customers and market conditions.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?