Benefits Realisation Frameworks – A Useful Handle

One of the greatest challenges of project management is maintaining top-down support in the face of fluctuating priorities. If you elect to take on the role yourself and are peppered by other priorities, it can be a challenge to exactly remember why you are changing things and what your goals are. Sometimes you may not even notice you have reached your goal.

The Benefits Realisation Chart-room

The Benefits Realisation Model is a framework on which to hang key elements of any project. These traditionally include the following, although yours may not necessarily be the same:

  • Definition of the project goal
  • Quantification of intended benefits
  • Project plan versus actual progress
  • How you know you reached your goal
  • Quantification of actual benefits

Another way of describing Benefits Realisation Frameworks is they answer four fundamental questions that every project manager should know by heart:

  • What am I going to do?
  • How am I going to do it?
  • When will I know it’s done?
  • What exactly did I achieve?

The Benefits Realisation Promise

An astounding number of projects fail to reach completion, or miss their targets. It’s not for nothing that the expression ?after the project failed the non-participants were awarded medals? is often used in project rooms. We’re not saying that it is a panacea for success. However it can alert you to warnings that your project is beginning to falter in terms of delivering the over-arching benefits that justify the effort.

When Projects Wander Off-Target

Pinning blame on participants is pointless when project goals are flawed. For example, the goals may be entirely savings-focused and not follow through on what to do with the windfall. At other times realisation targets may be in place, but nobody appointed to recycle the benefits back into the organisation. This is why a Benefits Realisation Framework needs to look beyond the project manager?s role.

Realisation Management in Practice

If the project framework does not look beyond the project manager?s role, then it is over when it reaches its own targets ? and can even run the risk of being an event that feeds entirely off itself. In order to avoid a project being a means to its own end, this first phase must culminate with handover to a benefits realisation custodian.

An example of this might be a project to centralise facilities that is justified in terms of labour savings. The project manager?s job is to build the structure. Someone else needs to rationalise the organisation.

In conclusion, the Benefits Realisation Framework is a useful way of ensuring a project does not only achieve its internal goals, but also remains a focus of management attention because of its extended, tangible benefits.

Check our similar posts

Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Recognizing Your Carbon Footprint

Countless times we have heard of the term ?carbon footprint?. Perhaps we have seen and heard it on TV or read it in newspapers, magazines and published articles. Indeed, it has been an expression familiar to everyone as it is always associated with climate change, carbon emissions, global warming, pollution and other environmental issues. Carbon footprint is real. It exists and, in fact, continues to affect the world we live in.

Defining Carbon Footprint

Two essential words comprise the term carbon footprint. Fundamentally, ?carbon? means the carbon dioxide circulating in the atmosphere. It is also the general word used for other greenhouse gasses emitted into the air. On the other note, ?footprint? refers to impact or effect.

Think about the footprints people leave on the beach sand upon walking on the shore. That is exactly what carbon footprint is like. It’s about the impact humans leave on the earth in the form of carbon dioxide and other greenhouse gases.

Calculating Your Personal Carbon Footprint

The food we eat, products we use, vehicles we ride on and electricity we consume emit carbon dioxide. In fact, our activities, lifestyle, homes, and countries contribute to climate change. And carbon footprint is the best estimate we can get of the full impact our doings affect the earth. It quantifies the amount of our carbon emission. With this, knowing how to calculate your personal carbon footprint is important.

There are various standards in calculating one?s carbon footprint. There is the so-called ?lifestyle assessment? and the input-output analysis. Lifestyle assessment works by adding up all the feasible emission pathways while the input-output analysis involves determining the total emissions of a particular country, dividing it by the carbon-emitting sectors and estimating the overall emissions of each sector. The input-output analysis makes sure that no emission pathway is missed out.

Calculating your carbon footprint manually is an effective way for you to understand your emissions better. You just need a lot of patience to learn how each footprint is generated. Moreover, there are also several resources online that can help you calculate your carbon footprint. Online carbon calculators are abundant across the web. To make your life simpler, you can opt to try those online calculators and easily determine your carbon emissions. However, such calculators vary in scope. So make sure that the online carbon calculator, you choose, is one that?includes emissions both direct and indirect.

Avoiding Toe Prints

A toe print is a portion of a footprint. Sometimes, people are misled in their calculations because they only get a carbon toe print instead of a footprint. The idea is that, you should cover a smart scope of your carbon emissions. Not only measuring a portion, but the whole.

Say for example, running a conventional car. The carbon emitted from the car is not only the fuel combustion from the diesel or petrol.? Likewise, the carbon released as the gas was processed and transported to your nearby gasoline station is also an addition to your carbon footprint. If you do not understand this, you will end up calculating your direct emissions while neglecting the indirect ones.

Be wise in calculating your carbon footprint. And when in doubt, whether you are an individual or a business entity, you should seek help from experts who can do it right.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?