Benefits Realisation Frameworks – A Useful Handle

One of the greatest challenges of project management is maintaining top-down support in the face of fluctuating priorities. If you elect to take on the role yourself and are peppered by other priorities, it can be a challenge to exactly remember why you are changing things and what your goals are. Sometimes you may not even notice you have reached your goal.

The Benefits Realisation Chart-room

The Benefits Realisation Model is a framework on which to hang key elements of any project. These traditionally include the following, although yours may not necessarily be the same:

  • Definition of the project goal
  • Quantification of intended benefits
  • Project plan versus actual progress
  • How you know you reached your goal
  • Quantification of actual benefits

Another way of describing Benefits Realisation Frameworks is they answer four fundamental questions that every project manager should know by heart:

  • What am I going to do?
  • How am I going to do it?
  • When will I know it’s done?
  • What exactly did I achieve?

The Benefits Realisation Promise

An astounding number of projects fail to reach completion, or miss their targets. It’s not for nothing that the expression ?after the project failed the non-participants were awarded medals? is often used in project rooms. We’re not saying that it is a panacea for success. However it can alert you to warnings that your project is beginning to falter in terms of delivering the over-arching benefits that justify the effort.

When Projects Wander Off-Target

Pinning blame on participants is pointless when project goals are flawed. For example, the goals may be entirely savings-focused and not follow through on what to do with the windfall. At other times realisation targets may be in place, but nobody appointed to recycle the benefits back into the organisation. This is why a Benefits Realisation Framework needs to look beyond the project manager?s role.

Realisation Management in Practice

If the project framework does not look beyond the project manager?s role, then it is over when it reaches its own targets ? and can even run the risk of being an event that feeds entirely off itself. In order to avoid a project being a means to its own end, this first phase must culminate with handover to a benefits realisation custodian.

An example of this might be a project to centralise facilities that is justified in terms of labour savings. The project manager?s job is to build the structure. Someone else needs to rationalise the organisation.

In conclusion, the Benefits Realisation Framework is a useful way of ensuring a project does not only achieve its internal goals, but also remains a focus of management attention because of its extended, tangible benefits.

Check our similar posts

Finding the Best Structure for Your Enterprise Development Team

An enterprise development team is a small group of dedicated specialists. They may focus on a new business project such as an IoT solution. Members of microteams cooperate with ideas while functioning semi-independently. These self-managing specialists are scarce in the job market. Thus, they are a relatively expensive resource and we must optimise their role.

Organisation?Size and Enterprise Development Team Structure

Organisation structure depends on the size of the business and the industry in which it functions. An enterprise development team for a micro business may be a few freelancers burning candles at both ends. While a large corporate may have a herd of full-timers with their own building. Most IoT solutions are born out of the efforts of microteams.

In this regard, Bill Gates and Mark Zuckerberg blazed the trail with Microsoft and Facebook. They were both college students at the time, and both abandoned their business studies to follow their dreams. There is a strong case for liberating developers from top-down structures, and keeping management and initiative at arm?s length.

The Case for Separating Microteams from the?Organisation

Microsoft Corporation went on to become a massive corporate, with 114,000 employees, and its founder Bill Gates arguably one of the richest people in the world. Yet even it admits there are limitations to size. In Chapter 2 of its Visual Studio 6.0 program it says,

‘today’s component-based enterprise applications are different from traditional business applications in many ways. To build them successfully, you need not only new programming tools and architectures, but also new development and project management strategies.?

Microsoft goes on to confirm that traditional, top-down structures are inappropriate for component-based systems such as IoT solutions. We have moved on from ?monolithic, self-contained, standalone systems,? it says, ?where these worked relatively well.?

Microsoft’s model for enterprise development teams envisages individual members dedicated to one or more specific roles as follows:

  • Product Manager ? owns the vision statement and communicates progress
  • Program Manager ? owns the application specification and coordinates
  • Developer ? delivers a functional, fully-complying solution to specification
  • Quality Assurer ? verifies that the design complies with the specification
  • User Educator ? develops and publishes online and printed documentation
  • Logistics Planner ? ensures smooth rollout and deployment of the solution

Three Broad Structures for Microteams working on IoT Solutions

The organisation structure of an enterprise development team should also mirror the size of the business, and the industry in which it functions. While a large one may manage small microteams of employee specialists successfully, it will have to ring-fence them to preserve them from bureaucratic influence. A medium-size organisation may call in a ?big six? consultancy on a project basis. However, an independently sourced micro-team is the solution for a small business with say up to 100 employees.

The Case for Freelancing Individuals versus Functional Microteams

While it may be doable to source a virtual enterprise development team on a contracting portal, a fair amount of management input may be necessary before they weld into a well-oiled team. Remember, members of a micro-team must cooperate with ideas while functioning semi-independently. The spirit of cooperation takes time to incubate, and then grow.

This is the argument, briefly, for outsourcing your IoT project, and bringing in a professional, fully integrated micro-team to do the job quickly, and effectively. We can lay on whatever combination you require of project managers, program managers, developers, quality assurers, user educators, and logistic planners. We will manage the micro-team, the process, and the success of the project on your behalf while you get on running your business, which is what you do best.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Systems Integration as a means to cost reduction

System integration in an organisation refers to a process whereby two or more separate systems are brought together for the purpose of pooling the value in the separate systems into one main system. A key component of process consolidation within any organisation is the utilisation of IT as a means to achieve this end. As such, system integration as a means to cost reduction offers organisations the opportunity to adopt and implement lean principles with the attendant benefits. The implementation of lean techniques requires an adherence to stated methods to facilitate the elimination of wastage in the production of goods and services. In summary, the lean philosophy seeks to optimise the speed of good and service production, through the elimination of waste.

While analysing some of the traditional sources of waste in organisational activities, things like overproduction, inventory, underutilised ideas, transmission of information and ideas, transportation of people and material, time wastage and over-processing stand out. The fact is that companies can eliminate a significant portion of waste through the utilisation of IT to consolidate processes within their organisation.

Adopting lean principles calls for the identification of all of the steps in the company value stream for each product family for the purpose of the eliminating the steps that do not create any value. In other words, this step calls for the elimination of redundant steps in the process flow. This is exactly what the utilisation of IT to consolidate processes offers a company. For instance, the adoption of a central cloud system across a large organisation with several facilities could increase efficiencies in that company. Such a company would drastically reduce the redundancies that used to exist in the different facilities, eliminate the instances of hardware and software purchase, maintenance and upgrade, modernise quality assurances processes and identify further opportunities for improvement.

Perhaps, from the company’s point of view, and from the perspective of lean process implementation, the most important factor is?the effect it has?on the bottom line.’reducing the number of hardware, eliminating the need for maintaining and upgrading hardware, removing the necessity for software purchase and upgrade across facilities also contributes to a significant reduction in operational costs.?This reduction in the cost of operations leads to a corresponding increase in the profit margin of the company.

Applying system integration as a means to cost reduction can also lead to the reduction in the number of people needed to operate the previous systems that have been integrated into one primary unit. Usually, companies must hire people with specialised knowledge to operate and maintain the various systems. Such employees must also receive special training and frequent ongoing education to constantly stay informed of the latest trends in process management. With the integration of the system, the number of people needed to maintain the central system will be significantly reduced, also improving the security of information and other company trade secrets.

Based on an analysis of the specific needs that exist in a particular company environment, a system integration method that is peculiar to the needs of that organisation will be worked out. Some companies may find it more cost-effective to use the services of independent cloud service providers. Others with more resources and facilities may decide to set up their own cloud service systems. Often, private cloud service system capabilities far exceed the requirements of the initiating company, meaning that they could decide to “sell” the extra “space” on their cloud network to other interested parties.

A company that fully applies the lean principles towards the integration of its systems will be able to take on additional tasks as a result of the system consolidation. This leads to an increase in performance, and more efficiency due to the seamless syncing of information in a timely and uniform manner.

Companies have to combine a top-down and a bottom-up approach towards their system integration methods. A top-down approach simply utilises the overall system structure that is already in place as a starting point, or as a foundation. The bottom-up approach seeks to design new systems for integration into the system. Other methods of system integration include the vertical, star and horizontal integration methods. In the horizontal method, a specified subsystem is used as an interface for communication between other subsystems. For the star system integration method, the subsystems are connected to the system in a manner that resembles the depiction of a star; hence, the name. Vertical integration refers to the method of the integration of subsystems based on an analysis of their functionality.

The key to successful system integration for the purpose of cost reduction is to take a manual approach towards identifying the various applicable lean principles, with respect to the system integration process. For instance, when value has been specified, it becomes easier to identify value streams. The other process of removing unnecessary or redundant steps will be easier to follow when the whole project is viewed from the whole, rather than’the part. Creating an integrated system needs some?patience?in order to work out kinks and achieve the desired perfect value that creates no waste.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Malware

In the past, viruses were created with the sole purpose of wreaking havoc on the infected systems. A large fraction of today’s malware, on the other hand, are designed to generate revenues for the creator. Spyware, botnets, and keyloggers steal information from your system or control it so that someone else can profit. In other words, the motivation for making them is now more attractive than before.

Keyloggers can reveal your usernames, passwords, PIN numbers, and other authentication information to their creators by recording your key strokes. This information can then be used for breaking into various accounts: credit cards, payment programs (like PayPal), online banks, and others. You’re right, keyloggers are among the favourite tools of individuals involved in identity theft.

Much like the viruses of old, most present day malware drain the resources, such as memory and hard disk space, of contaminated systems; sometimes forcing them to crash. They can also degrade network performance and in extreme cases, may even cause a total collapse.

If that’s not daunting enough, imagine an outbreak in your entire organisation. The damage could easily cost your organisation thousands of euros to repair. That’s not even counting yet the value of missed opportunities.

Entry points for malware range from optical disks, flash drives, and of course, the Internet. That means, your doors could be wide open to these attacks at this very moment.

Now, we’re not here to promise total invulnerability, as only an unplugged computer locked up in a vault will ever be totally safe from malware. Instead, this is what we’ll do:

  • Perform an assessment of your computer usage practices and security policies. Software and hardware alone won’t do the trick.
  • Identify weak points as well as poor practices and propose changes wherever necessary. Weak points and poor practices range from the use of perennial passwords and keeping old, unused accounts to poorly configured firewalls.
  • Install malware scanners and firewalls and configure them for maximal protection with minimal effect on network and system performance.
  • Implement regular security patches.
  • Conduct a regular inspection on security policy compliance as well as a review of the policies to see if they are up to date with the latest threats.
  • Keep an audit trail for future use in forensic activities.
  • Establish a risk management system.
  • Apply data encryption where necessary.
  • Implement a backup system to make sure that, in a worst case scenario, archived data is safe.
  • Propose data replication so as to mitigate the after effects of data loss and to ensure your company can proceed with ‘business as usual’.

Once we’ve worked with you to make all these happen, you’ll be able to sleep better.

Other defences we’re capable of putting up include:

Ready to work with Denizon?