ESOS Guide for UK Manufacturers Available

The Engineering Employers’ Federation (EEF) is the UK’s largest sectoral structure. Its goal is to promote the interests of manufacturing, engineering and technology-based businesses in order to enhance their competitiveness.

EEF has positioned itself in London and Brussels in order to be in a position to lobby at EU and Westminster level. Part of its role is helping its members adapt to change and capitalise on it. When it discovered that a third of UK manufacturers must comply with ESOS (and 49% had not even heard of it) EEF decided it was time to publish a handbook for its members.

According to EEF’s head of climate and environment policy Gareth Stace, For the many manufacturers that have already taken significant steps to improve energy efficiency, ESOS can be viewed as a ?stock taking exercise?, ensuring that momentum is maintained and new measures are highlighted and taken when possible?.

He goes on to add that others that have not begun the process should view it as an ‘impetus’ to go head down and find the most cost-effective ways to slash energy costs. Ecovaro adds that they would also have the opportunity to reduce carbon emissions almost as a by-product.

Firms with more than 250 employees, over 250 million revenue or both must comply with ESOS across all UK sectors. In simplest terms, they must have conducted an energy audit by 5th December 2015, and logged their energy saving plan with the Environmental Agency that is Britain?s sustainability watchdog.

The Department of Energy & Climate Change (DEEC) that oversees it believes that large UK businesses are wasting ?2.8 billion a year on electricity they do not need. Clearly it makes sense to focus on larger targets; however EcoVaro believes those halfway to the threshold should voluntarily comply if cutting their energy bills by 25% sounds appealing.

We are able to assist with interpreting their energy audits. These are often a matter of installing sub-meters at distribution points, and reading these for a few representative months to establish a trend. Meters are inexpensive compared to electricity costs, and maintenance teams can install them during maintenance shutdowns.

Ecovaro helps these firms process the data into manageable summaries using cloud-based technology. This is on a pay-when-used basis, and hence considerably cheaper than acquiring the software, or appointing a consultant.

Check our similar posts

Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
A Small External Enterprise Development Team is Cheaper than Your Own

Time is money in the application development business. We have to get to market sooner so someone else does not gazump us, and pip us at the post. We increase the likelihood of this with every delay. Moreover, the longer your in-house team takes to get you through the swamp, the higher the project cost to you.

Of course, in theory this should not be the case. Why bring in a team from outside, and pay more to support their corporate structure? Even going for a contract micro team ought not to make financial sense, because we have to fund their mark-up and their profit taking. Our common sense tells us that this is crazy. But, hold that thought for a minute. What would you say if a small external enterprise development team was actually cheaper? To achieve that, they would have to work faster too.

The costs of an Enterprise Internal Development Team

Even if you were able to keep your own team fully occupied ? which is unlikely in the long term ? having your own digital talent pool works out expensive when you factor in the total cost. Your difficulties begin with the hiring process, especially if you do not fully understand the project topic, and have to subcontract the hiring task.

If you decide to attempt this yourself, your learning curve could push out the project completion date. Whichever way you decide to go, you are up for paying advertising, orientation training, technical upskilling, travel expenses, and salaries all of which are going to rob your time. Moreover, a wrong recruitment decision would cost three times the new employee?s annual salary, and there is no sign of that changing.

But that is not all, not all by far. If want your in-house team to keep their work files in the office, then you are going to have to buy them laptops, plus extra screens so they can keep track of what they are doing. Those laptops are going to need desks, and those employees, chairs to sit in. Plus, you are going to need expensive workspace with good security for your team?s base.

If we really wanted to lay it on, we would add software / cloud costs, telephony, internet access, and ongoing technical training to the growing pile. We did a quick scan on PayScale. The median salary of a computer programmer in Ireland is ?38,000 per year and that is just the beginning. If you need a program manager for your computer software, their salary will be almost double that at ?65,000 annually.

Advantages of R&D outsourcing

The case for a small externally sourced enterprise development team revolves around the opportunity cost ? or loss to put in bluntly ? of hiring your own specialist staff for projects. If you own a smaller business with up to 100 people, you are going to have to find work for idle digital fingers, after you roll out your in-house enterprise project. If you do not, you head down the road towards owning a dysfunctional team lacking a core, shared objective to drive them forward.

Compared to this potential extravagance, hiring a small external enterprise development team on an as-needed basis makes far more sense. Using a good service provider as a ?convenience store? drives enterprise development costs down through the floor, relative to having your own permanent team. Moreover, the major savings that arise are in your hands and free to deploy as opportunities arise. A successful business is quick and nimble, with cash flow on tap for R & D.

Ready to work with Denizon?