Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

Check our similar posts

Is Your Project Agile, a Scrum or a Kanban?

Few projects pan out the way we expect when starting out. This is normal in any creative planning phase. We half suspect the ones that follow a straight line are the exceptions to the rule. Urban legend has it; Edison made a thousand prototypes before his first bulb lit up, and then went on to comment, ?genius is 1% inspiration, 99% perspiration?. Later, he added that many of life’s failures are people who did not realise just how close they were to success when they gave up.

So be it to this day, and so be it with project planning too. There is no one size fits all approach when it comes to it. Agile, Scrum and Kanban each have their supporters and places where they do well. Project planning often works best when we use a sequential combination of them, appropriate to what is currently happening on the ground.

Of the three, Agile is by far the most comprehensive. It provides a structure that begins with project vision / conceptualisation, and goes as far as celebration when the job is over, and retrospective discussion afterwards. However, the emphasis on daily planning meetings may dent freethinking, and even smother it.

Scrum on the other hand says ?forget all that bureaucracy?. There is a job to do and today is the day we are going to do it. Although the core Agile teamwork is still there it ignores macro project planning, and could not be bothered with staying in touch with customers. If using Scrum, it is best to give those jobs to someone else.

The joker in the pack is Kanban, It believes that rules are there to substitute for thought, and that true progress only comes from responsible freedom. It belongs in mature organisations that have passed through Scrum and Agile phases and have embarked on a voyage towards perfection.

That said, there can be no substitute for human leadership, especially when defined as the social influence that binds the efforts of others towards a single task.

What Kanban can do for Call Centre Response Times

When a Toyota industrial engineer named Taiichi Ohno was investigating ways to optimise production material stocks in 1953, it struck him that supermarkets already had the key. Their customers purchased food and groceries on a just-in-time basis, because they trusted continuity of supply. This enabled stores to predict demand, and ensure their suppliers kept the shelves full.

The Kanban system that Taiichi Ohno implemented included a labelling system. His Kanban tickets recorded details of the factory order, the delivery destination, and the process intended for the materials. Since then, Ohno?s system has helped in many other applications, especially where customer demand may be unpredictable.

Optimising Workflow in Call Centres
Optimising workflow in call centres involves aiming to have an agent pick up an incoming call within a few rings and deal with it effectively. Were this to be the case we would truly have a just-in-time business, in which operators arrived and left their stations according to customer demand. For this to be possible, we would need to standardise performance across the call centre team. Moving optimistically in that direction we would should do these three things:

  • Make our call centre operation nimble
  • Reduce the average time to handle calls
  • Decide an average time to answer callers

When we have done that, we are in a position to apply these norms to fluctuating call frequencies, and introduce ?kanbanned? call centre operators.

Making Call Centre Operations Nimble
The best place to start is to ask the operators and support staff what they think. Back in the 1960?s Robert Townsend of Avis Cars famously said, ?ask the people ? they know where the wheels are squeaking? and that is as true as ever.

  1. Begin by asking technical support about downtime frequencies, duration, and causes. Given the cost of labour and frustrated callers, we should have the fastest and most reliable telecoms and computer equipment we can find.
  1. Then invest in training and retraining operators, and making sure the pop-up screens are valuable, valid, and useful. They cannot do their job without this information, and it must be at least as tech-savvy as their average callers are.
  1. Finally, spruce up the call centre with more than a lick of paint to awaken a sense of enthusiasm and pride. Find time for occasional team builds and fun during breaks. Tele-operators have a difficult job. Make theirs fun!

Reducing Average Time to Handle Calls
Average length of contact is probably our most important metric. We should beware of shortening this at the cost of quality of interaction. To calculate it, use this formula:

Total Work Time + Total Hold Time + Total Post Call Time

Divided By

Total Calls Handled in that Period

Share recordings of great calls that highlight how your best operators work. Encourage role-play during training sessions so people learn by doing. Publish your average call-handling time statistics. Encourage individual operators to track how they are doing against these numbers. Make sure your customer information is up to date. While they must confirm core data, limit this so your operators can get down to their job sooner.

Decide a Target Time to Answer Calls
You should know what is possible in a matter of a few weeks. Do not attempt to go too tight on this one. It is better to build in say 10% slack that you can always trim in future. Once you have decided this, you can implement your Kanban system.

Introducing Kanban in Your Call Centre Operation
Monitor your rate of incoming calls through your contact centre, and adjust your operator-demand metric on an ongoing basis. Use this to calculate your over / under demand factor. Every operator should know the value on this Kanban ticket. It will tell them whether to speed up a little, or slow down a bit so they deliver the effort the call rate demands. It will also advise the supervisor when to call up reserves.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?