FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Network Security

The easiest way for an external threat to get to your private data is through your network. The easiest way to eliminate that threat? Get your data out of the network. Of course, we know you wouldn’t want to do that. We also know that while you may want to sniff every packet for anything suspicious, you wouldn’t want your network to crawl either.

That’s why we’re offering to put up the most efficient checkpoints on every route that leads into and out of your system.

So what can you expect from our brand of network security?

  • Review of your policies and processes for weaknesses – If we see a loophole, we’ll recommend modifications wherever necessary.
  • Protection for your applications and infrastructure – Since we’re familiar with both software and hardware-based protection systems, we can recommend which type is best suited for your setup.
  • Automated identification of business and mission critical applications – They’ll be given priority in your network to ensure bandwidth allocation is optimised.
  • Automated network audits and vulnerability management – Tired of getting prompted by pesky vulnerability notices and don’t know what to do with them? Well, that’s why we’re here.
  • Customisable security reports that contain only relevant and accurate data.

We can also help you with the following:

2015 ESOS Guidelines Chapter 6 – Role of Lead Assessor

The primary role of the lead assessor is to make sure the enterprise?s assessment meets ESOS requirements. Their contribution is mandatory, with the only exception being where 100% of energy consumption received attention in an ISO 50001 that forms the basis of the ESOS report.

How to Find a Lead Assessor

An enterprise subject to ESOS must negotiate with a lead assessor with the necessary specialisms from one of the panels approved by the UK government. This can be a person within the organisation or an third party. If independent, then only one director of the enterprise need countersign the assessment report. If an employee, then two signatures are necessary. Before reaching a decision, consider

  • Whether the person has auditing experience in the sector
  • Whether they are familiar with the technology and the processes
  • Whether they have experience of auditing against a standard

The choice rests on the enterprise itself. The lead assessor performs the appointed role.

The Lead Assessor?s Role

The Lead Assessor?s main job is reviewing an ESOS assessment prepared by others against the standard, and deciding whether it meets the requirements. They may also contribute towards it. Typically their role includes:

  • Checking the calculation for total energy consumption across the entire enterprise
  • Reviewing the process whereby the 90% areas of significant consumption were identified
  • Confirming that certifications are in place for all alternate routes to compliance chosen
  • Checking that the audit reports meet the minimum criteria laid down by the ESOS system

Note: A lead assessor may partly prepare the assessment themselves, or simply verify that others did it correctly.

In the former instance a lead assessor might

  • Determine energy use profiles
  • Identify savings opportunities
  • Calculate savings measures
  • Present audit findings
  • Determine future methodology
  • Define sampling methods
  • Develop audit timetables
  • Establish site visit programs
  • Assemble ESOS information pack

Core Enterprise Responsibilities

The enterprise cannot absolve itself from responsibility for good governance. Accordingly, it remains liable for

  • Ensuring compliance with ESOS requirements
  • Selecting and appointing the lead assessor
  • Drawing attention to previous audit work
  • Agreeing with what the lead assessor does
  • Requesting directors to sign the assessment

The Environment Agency does not provide assessment templates as it believes this reduces the administrative burden on the enterprises it serves.

Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Ready to work with Denizon?