How Alcoa Canned the Cost of Recycling

Alcoa is one of the world?s largest aluminium smelting and casting multinationals, and involves itself in everything from tin cans, to jet engines to single-forged hulls for combat vehicles. Energy costs represent 26% of the company?s total refining costs, while electricity contributes 27% of primary production outlays. Its Barberton Ohio plant shaved 30% off both energy use and energy cost, after a capital outlay of just $21 million, which for it, is a drop in the bucket.

Aluminium smelting is so expensive that some critics describe the product as ?solid electricity?. In simple terms, the method used is electrolysis whereby current passes through the raw material in order to decompose it into its component chemicals. The cryolite electrolyte heats up to 1,000 degrees C (1,832 degrees F) and converts the aluminium ions into molten metal. This sinks to the bottom of the vat and is collected through a drain. Then they cast it into crude billets plugs, which when cooled can be re-smelted and turned into useful products.

The Alcoa Barberton factory manufactures cast aluminium wheels across approximately 50,000 square feet (4,645 square meters) of plant. It had been sending its scrap to a sister company 800 miles away; who processed it into aluminium billets – before sending them back for Barberton to turn into even more wheels. By building its own recycling plant 60 miles away that was 30% more efficient, the plant halved its energy costs: 50% of this was through process engineering, while the balance came from transportation.

The transport saving followed naturally. The recycling savings came from a state-of-the-art plant that slashed energy costs and reduced greenhouse gas emissions. Interestingly enough, processing recycled aluminium uses just 5% of energy needed to process virgin bauxite ore. Finally, aluminium wheels are 45% lighter than steel, resulting in an energy saving for Alcoa Barberton?s customers too.

The changes helped raise employee awareness of the need to innovate in smaller things too, like scheduling production to increase energy efficiency and making sure to gather every ounce of scrap. The strategic change created 30 new positions and helped secure 350 existing jobs.

The direction that Barberton took in terms of scrap metal recycling was as simple as it was effective. The decision process was equally straightforward. First, measure your energy consumption at each part of the process, then define the alternatives, forecast the benefits, confirm and implement. Of course, you also need to be able to visualise what becomes possible when you break with tradition.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Network Security

The easiest way for an external threat to get to your private data is through your network. The easiest way to eliminate that threat? Get your data out of the network. Of course, we know you wouldn’t want to do that. We also know that while you may want to sniff every packet for anything suspicious, you wouldn’t want your network to crawl either.

That’s why we’re offering to put up the most efficient checkpoints on every route that leads into and out of your system.

So what can you expect from our brand of network security?

  • Review of your policies and processes for weaknesses – If we see a loophole, we’ll recommend modifications wherever necessary.
  • Protection for your applications and infrastructure – Since we’re familiar with both software and hardware-based protection systems, we can recommend which type is best suited for your setup.
  • Automated identification of business and mission critical applications – They’ll be given priority in your network to ensure bandwidth allocation is optimised.
  • Automated network audits and vulnerability management – Tired of getting prompted by pesky vulnerability notices and don’t know what to do with them? Well, that’s why we’re here.
  • Customisable security reports that contain only relevant and accurate data.

We can also help you with the following:

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Finding the Best Structure for Your Enterprise Development Team

An enterprise development team is a small group of dedicated specialists. They may focus on a new business project such as an IoT solution. Members of microteams cooperate with ideas while functioning semi-independently. These self-managing specialists are scarce in the job market. Thus, they are a relatively expensive resource and we must optimise their role.

Organisation?Size and Enterprise Development Team Structure

Organisation structure depends on the size of the business and the industry in which it functions. An enterprise development team for a micro business may be a few freelancers burning candles at both ends. While a large corporate may have a herd of full-timers with their own building. Most IoT solutions are born out of the efforts of microteams.

In this regard, Bill Gates and Mark Zuckerberg blazed the trail with Microsoft and Facebook. They were both college students at the time, and both abandoned their business studies to follow their dreams. There is a strong case for liberating developers from top-down structures, and keeping management and initiative at arm?s length.

The Case for Separating Microteams from the?Organisation

Microsoft Corporation went on to become a massive corporate, with 114,000 employees, and its founder Bill Gates arguably one of the richest people in the world. Yet even it admits there are limitations to size. In Chapter 2 of its Visual Studio 6.0 program it says,

‘today’s component-based enterprise applications are different from traditional business applications in many ways. To build them successfully, you need not only new programming tools and architectures, but also new development and project management strategies.?

Microsoft goes on to confirm that traditional, top-down structures are inappropriate for component-based systems such as IoT solutions. We have moved on from ?monolithic, self-contained, standalone systems,? it says, ?where these worked relatively well.?

Microsoft’s model for enterprise development teams envisages individual members dedicated to one or more specific roles as follows:

  • Product Manager ? owns the vision statement and communicates progress
  • Program Manager ? owns the application specification and coordinates
  • Developer ? delivers a functional, fully-complying solution to specification
  • Quality Assurer ? verifies that the design complies with the specification
  • User Educator ? develops and publishes online and printed documentation
  • Logistics Planner ? ensures smooth rollout and deployment of the solution

Three Broad Structures for Microteams working on IoT Solutions

The organisation structure of an enterprise development team should also mirror the size of the business, and the industry in which it functions. While a large one may manage small microteams of employee specialists successfully, it will have to ring-fence them to preserve them from bureaucratic influence. A medium-size organisation may call in a ?big six? consultancy on a project basis. However, an independently sourced micro-team is the solution for a small business with say up to 100 employees.

The Case for Freelancing Individuals versus Functional Microteams

While it may be doable to source a virtual enterprise development team on a contracting portal, a fair amount of management input may be necessary before they weld into a well-oiled team. Remember, members of a micro-team must cooperate with ideas while functioning semi-independently. The spirit of cooperation takes time to incubate, and then grow.

This is the argument, briefly, for outsourcing your IoT project, and bringing in a professional, fully integrated micro-team to do the job quickly, and effectively. We can lay on whatever combination you require of project managers, program managers, developers, quality assurers, user educators, and logistic planners. We will manage the micro-team, the process, and the success of the project on your behalf while you get on running your business, which is what you do best.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?