How Bombardier Inc. scored a Bulls Eye

When travelling anywhere in the world on land, sea or air, chances are, you will travel courtesy of something made by aerospace and transportation company Bombardier based in Montreal, Canada. In 2009, it set itself the goal of carbon neutrality by 2020. In other words, it hoped to remove as much carbon dioxide from the atmosphere as it was putting in.

By 2012, Bombardier concluded it was not going to become carbon neutral by 2020 at its current rate of progress. It discounted purchasing carbon offsets because it believed it would serve its interests better by introducing new energy-saving products to market faster. That way, it would achieve its objectives vicariously through the decisions of its customers. But that was not all that forward-thinking Bombardier did. It also set itself the following inward-facing objectives:

  • Reduce carbon footprint through efficient use of energy and less emissions
  • Involve the Bombardier workforce to raise awareness of behaving responsibly
  • Implement sustainable initiatives to further reduce the company carbon footprint

Specific Examples

At its Wichita site, Bombardier (a) fitted a white roof and insulation reducing summer energy consumption by 40%, (b) added an energy recovery wheel to balance air circulation, and (c) introduced skylights with integrated controllers to lower energy consumption by lighting.

At Mirabel, it enhanced the flue-gas management system by adding a pressure differential damper.

At Belfast, Bombardier (a) optimised HVAC systems to reduce pressure on chilling and air-handling plants, (b) installed solar panels on the roof, and (c) obtained approval for a waste-to-energy plant that will convert 120,000 tonnes of non-recyclable waste material annually.

By the end of 2013, Bombardier had already beaten its immediate targets by:

  • Reducing energy consumption by 11% against 2009
  • Reducing greenhouse gas emission by 23% against 2009
  • Reducing water consumption by 6% against 2012

Future Plans

Bombardier will never stop striving to reach its goal of carbon neutrality by 2020. It has a number of other projects in the pipeline waiting for scarce resources to fund them. During 2014, it continued with energy efficient upgrades at its French, Hungarian, Polish, Swiss, and UK plants.

These include consumption monitoring systems, LEDs for workshop lighting, new heating systems, and outdoor energy-saving tower lighting. The monitoring is important because it helps Bombardier focus effort, and provides measured proof of progress.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Benefits Realisation Frameworks – A Useful Handle

One of the greatest challenges of project management is maintaining top-down support in the face of fluctuating priorities. If you elect to take on the role yourself and are peppered by other priorities, it can be a challenge to exactly remember why you are changing things and what your goals are. Sometimes you may not even notice you have reached your goal.

The Benefits Realisation Chart-room

The Benefits Realisation Model is a framework on which to hang key elements of any project. These traditionally include the following, although yours may not necessarily be the same:

  • Definition of the project goal
  • Quantification of intended benefits
  • Project plan versus actual progress
  • How you know you reached your goal
  • Quantification of actual benefits

Another way of describing Benefits Realisation Frameworks is they answer four fundamental questions that every project manager should know by heart:

  • What am I going to do?
  • How am I going to do it?
  • When will I know it’s done?
  • What exactly did I achieve?

The Benefits Realisation Promise

An astounding number of projects fail to reach completion, or miss their targets. It’s not for nothing that the expression ?after the project failed the non-participants were awarded medals? is often used in project rooms. We’re not saying that it is a panacea for success. However it can alert you to warnings that your project is beginning to falter in terms of delivering the over-arching benefits that justify the effort.

When Projects Wander Off-Target

Pinning blame on participants is pointless when project goals are flawed. For example, the goals may be entirely savings-focused and not follow through on what to do with the windfall. At other times realisation targets may be in place, but nobody appointed to recycle the benefits back into the organisation. This is why a Benefits Realisation Framework needs to look beyond the project manager?s role.

Realisation Management in Practice

If the project framework does not look beyond the project manager?s role, then it is over when it reaches its own targets ? and can even run the risk of being an event that feeds entirely off itself. In order to avoid a project being a means to its own end, this first phase must culminate with handover to a benefits realisation custodian.

An example of this might be a project to centralise facilities that is justified in terms of labour savings. The project manager?s job is to build the structure. Someone else needs to rationalise the organisation.

In conclusion, the Benefits Realisation Framework is a useful way of ensuring a project does not only achieve its internal goals, but also remains a focus of management attention because of its extended, tangible benefits.

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Ready to work with Denizon?