How Bouygues manages an Empire-Sized Footprint

Bouygues is into telecoms / media, and building and road construction. It also knows it has to watch its energy footprint closely. Owning 47% of energy giant Alstom keeps it constantly in the media spotlight. Shall we find out more about its facility management policies?

The journal Premises and Facilities Management interviewed MD Martin Bouygues on his personal opinions concerning managing energy consumption in facilities. He began by commenting that this was hardly a subject for the C-Suite in years gone by. Low-level clerks simply paid the bills following which the actual amounts were lost in the general expenses account. That of course has changed.

Early pressure came from soaring energy bills, which were pursued by a whole host of electricity-saving gadgets. However, it was only after the carbon crisis caught business by surprise that the link was forged to aerial pollution, and the social responsibilities of big business to help with the solution. The duty to have an energy strategy became an obligation eagerly policed by organisations such as Greenpeace.

Unsurprisingly, Martin Bouygues? advice begins with keeping energy consumption and its carbon footprint as high up on the agenda as health and safety. ?It needs bravery and a lot of hard work to get it there,? he says, ?so perseverance is the key?. 

The company has developed proprietary software that enables it to pull data from remote sensors in more than 80 countries every fifteen minutes. A single large building can contribute 50 million data items annually making data big business in the system. Every building has an allocated energy performance contract against which results are reported monthly, as a basis for reviewing progress.

The system is intelligent and able to incorporate low-occupancy periods such as weekends and public holidays. What is measured gets managed. We all know that, but how many of us apply the principle to our energy bills. With assistance from ecoVaro, the possible becomes real.

We offer a similar service to the Bouygues model with one notable exception. You don’t buy the software and you only pay when you use it. Our systems are simply designed for busy financial managers.

Check our similar posts

ecoVaro to tackle water stress

For many people within the UK, water is not really something to worry about. Surely enough of it falls out the sky throughout the year that it does feel highly unlikely that we?ll ever run out of it. There certainly does seem to be an abundance of Branded Water available in plastic bottles on our supermarket shelves.

Water, water, every where,
And all the boards did shrink;
Water, water, every where,
Nor any drop to drink.

The Rime of the Ancient Mariner ? Samuel Taylor Coleridge

Despite this, Once-unthinkable water crises are becoming commonplace.  If you consider that In England and Wales, we use 16 billion litres of clean drinking water every day ? that’s equivalent to 6,400 Olympic sized swimming pools.

Currently, water companies can provide slightly more than we need ? 2 billion litres are available above and beyond what we’re using.  In some areas, though, such as south east England, there is no surplus and, as such, these regions are more likely to face supply restrictions in a dry year.

If we take little moment to reflect on some of the most notable water related stories over the past few years, we’ll start to get a picture of just how real the potential and the threat of water shortages can be.

Reservoirs in Chennai, India?s sixth-largest city, are nearly dry right now. Last year, residents of Cape Town, South Africa narrowly avoided their own Day Zero water shut-off.

It was only year before that, Rome rationed water to conserve scarce resources.

Climate change is likely to mean higher temperatures which may drive up the demand for water (alongside population growth) and increase evaporation from reservoirs and water courses during spring and summer.

The impact of climate change on total rainfall is uncertain, but the rain that does fall is likely to arrive in heavier bursts in winter and summer. Heavier rain tends to flow off land more quickly into rivers and out to sea, rather than recharging groundwater aquifers.

A greater chance of prolonged dry periods is also conceivable.  This combined with the harsh reality that no human population can sustain itself without sufficient access to fresh water.

If present conditions continue, 2 out of 3 people on Earth will live within a water-stressed zone by 2025

What is water stress?

Water stress is a term used to describe situation when demand for water is greater than the amount of water available at a certain period in time, and also when water is of poor quality and this restricts its usage. Water stress means deterioration in both the quantity of available water and the quality of available water due to factors affecting available water.

Water stress refers to the ability, or lack thereof, to meet human and ecological demand for water. Compared to scarcity, water stress is a more inclusive and broader concept.

Water Stress considers several physical aspects related to water resources, including water scarcity, but also water quality, environmental flows, and the accessibility of water.

Supply and Demand

Major factors involved when water scarcity strikes is when a growing populations demand for water exceeds the areas ability to service that need.

Increased food production and development programs also lead to increased demand for water, which ultimately leads to water stress.

Increased need for agricultural irrigation in order to produce more crops or sustain livestock are major contributors to localised water stress.

Overconsumption

The demand for water in a given population is fairly unpredictable.  Primarily, based on the fact that you can never accurately predict human behaviour and changes in climate.

If too many people are consuming more water than they need because they mistakenly believe that water is freely available and plentiful, then water stress could eventually occur.

This is also linked to perceived economic prosperity of a give region.  Manufacturing demand for water can have huge impact regardless whether water is actively used within the manufacturing process or not.

Water Quality

Water quality in any given area is never static.  Water stress could happen as a result of rising pollution levels having a direct impact on water quality.

Water contamination happens when new industries either knowingly or unknowingly contaminate water with their industrial practices.

Largely, this can happen and frequently does so because these industries do not take effective control of monitoring and managing their impact on communal water supplies.  Incorrectly assuming this is the responsibility of an additional third party like the regional water company.

The truth is, water quality and careful monitoring of it is all of our responsibility.

Water Scarcity

Simple increases in demand for water can in itself contribute to water scarcity. However,  these are often preceded by other factors like poverty or just the natural scarcity of water in the area.

In many instances, the initial locations of towns or cities were not influenced by the close proximity of natural resources like water, but rather in pursuit of the extraction of other resources like Gold, Coal or Diamonds.

For Instance, Johannesburg,  South Africa is the largest City in South Africa and is one of the 50 largest urban areas in the world. It is also located in the mineral rich Witwatersrand range of hills and is the centre of large-scale gold and diamond trade.

Johannesburg is also one of the only major cities of the world that was not built on a river or harbour.   However, it does have streams that contribute to two of Southern Africas mightiest rivers – Limpopo and the Orange rivers.  However, most of the springs from which many of these streams emanate are now covered in concrete!

Water Stress and Agriculture

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of real-time data and utilize cloud-based storage and processing power to curate it.

Sentek?s technology can be found in remote places like Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily repositioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to an end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By accurately monitoring water can be saved until when the plant really needs it.

Peter also emphasises that crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return.

The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us.

Ecovaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

A Quarter of the World?s Population, Face High Water Stress

Data from WRI?s Aqueduct tools reveal that 17 countries ? home to one-quarter of the world?s population?face ?extremely high? levels of baseline water stress, where irrigated agriculture, industries and municipalities withdraw more than 80% of their available supply on average every year. 

Water stress poses serious threats to human lives, livelihoods and business stability. It’s poised to worsen unless countries act: Population growth, socioeconomic development and urbanization are increasing water demands, while climate change can make precipitation and demand more variable.  

How to manage water stress

Water stress is just one dimension of water security. However, like any challenge, its outlook depends on adequate monitoring and management of environmental data.

Even countries with relatively high water stress have effectively secured their water supplies through proper management by leveraging the knowledge they have garnered by learning from the data they gathered.

3 ways to help reduce water stress

In any geography, water stress can be reduced by measures ranging from common sense to innovative technology solutions.

There are countless solutions, but here are three of the most straightforward:

1. Increase agricultural efficiency: The world needs to make every drop of water go further in its food systems. Farmers can use seeds that require less water and improve their irrigation techniques by using precision watering rather than flooding their fields.

Businesses need to increase investments to improve water productivity, while engineers develop technologies that improve efficiency in agriculture.

Consumers can reduce food loss and waste, which uses one-quarter of all agricultural water.

2. Invest in grey and green infrastructure:  D Data produced by Aqueduct Alliance  –  shows that water stress can vary tremendously over the year.  WRI and the World Bank?s research shows that built infrastructure (like pipes and treatment plants) and green infrastructure (like wetlands and healthy watersheds) can work in tandem to tackle issues of both water supply and water quality.

3. Treat, reuse and recycle:  We need to stop thinking of wastewater as waste.

Treating and reusing it creates a ?new? water source.

There are also useful resources in wastewater that can be harvested to help lower water treatment costs. For example, plants in Xiangyang, China and Washington, D.C. reuse or sell the energy- and nutrient-rich byproducts captured during wastewater treatment.

Summary

The data is undeniably clear, there are very worrying trends in water.

Businesses and other other organisations need to start taking action now and investing in better monitoring and management, we can solve water issues for the good of people, economies and the planet. We collectively cannot kick this can down the road any further, or assume that this problem will be solved by others.

It is time, for a collective sense of responsibility and for everyone to invest in future prosperity of our Planet as a collective whole.  Ecological preservation should be at the forefront of all business plans because at the end of the day profit is meaningless without an environment to enjoy it in!

The Connection between Big Data and MDM

Master Data is information that is critical to your business. This could include contracts, proprietary information, intellectual capital and a whole lot more besides. Because this often reposes in a variety of different places, you need a master data management / MDM policy to control it. That way, you can link it all together in a single, secure, backed up file.

This Sounds Like Big Data

Not necessarily: big data refers to extremely large data sets that are best stored and analysed on a cloud using big technology, in order to uncover trends, patterns and associations often relating to human behaviour. Of course, if you run a niche restaurant your critical master data might be limited to a few recipes and the books you do not care to show your accountant.

The distinction is largely a question of size: think of your master data as the subset of big data that you already have your mind around. According to John Case of IBM this is probably already in a structured format and available to share. He goes on to present a cogent case for using this as a peg point around which to systematise the rest. This is because the average organisation already has master data recording customers? and prospects? behaviour.

Do I Still Need My Master Data?

Yes you do, because real people created it with the benefit of human insight. Retain it as a separate set. Then compare it with the results of big data processing for even richer insights. Two heads are better that one and that goes for data processing too.

Trends in CRM Big Data

Adding data via location-aware devices like smartphones and tablets is adding a new dimension to customer information. We now know where they were when they made the enquiry or punched in the information. Use this geo-location data to hone the way you interact with customers and service their accounts. Do not phone a customer who makes decisions at work when they are at home.

Does My Master Data Belong on a Cloud?

There are a number of ?ifs? to consider. How comfortable are you with your service provider. What would happen if someone hacked their server? There are many advantages to cloud technology. Denizon knows of solutions you can rely on, and makes sure its clients have contingency plans to protect them at all times.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Uncover hidden opportunities with energy data analytics

What springs to mind when you hear the words energy data analytics? To me, I feel like energy data analytics is not my thing. Energy data analytics, however, is of great importance to any organisation or business that wants to run more efficiently, reduce costs, and increase productivity. Energy efficiency is one of the best ways to accomplish these goals.

Energy efficiency is not about investment in expensive equipment and internal reorganization. Enormous energy saving opportunities is hidden in already existing energy data. Given that nowadays, energy data can be recorded from almost any device, a lot of data is captured regularly and therefore a lot of data is readily available.

Organisations can use this data to convert their buildings’ operations from being a cost centre to a revenue centre through reduction of energy-related spending which has a significant impact on the profitability of many businesses. All this is possible through analysis and interpretation of data to predict future events with greater accuracy. Energy data analytics therefore is about using very detailed data for further analysis, and is as a consequence, a crucial aspect of any data-driven energy management plan.

The application of Data and IT could drive significant cost savings in company-owned buildings and vehicle fleets. Virtual energy audits can be performed by combining energy meter data with other basic data about a building e.g. location, to analyse and identify potential energy savings opportunities. Investment in energy dashboards can further enable companies to have an ongoing look at where energy is being consumed in their buildings, and thus predict ways to reduce usage, not to mention that energy data analytics unlock savings opportunities and help companies to understand their everyday practices and operating requirements in a much more comprehensive manner.

Using energy data analytics can enable an organisation to: determine discrepancies between baseline and actual energy data; benchmark and compare previous performance with actual energy usage. Energy data analytics also help businesses and organisations determine whether or not their Building Management System (BMS) is operating efficiently and hitting the targeted energy usage goals. They can then use this data to investigate areas for improvement or energy efficient upgrades. When energy data analytics are closely monitored, companies tend to operate more efficiently and with better control over relevant BMS data.

Ready to work with Denizon?