Making Click-and-Collect click

In my previous post, I introduced you to integrated e-commerce and explained why it is the right way to extend your business online. If you already have a brick-and-mortar retailing business and you’re looking to improve your online presence, you could start offering a click-and-collect service.

With click-and-collect, customers order online and then collect their merchandise from one of the retailer?s local branches. Why would they want to do that?

Apparently, there are buyers who now prefer a click-and-collect service over the delivery service of a purely online retailer. With the latter, they sometimes have to wait forever for the delivery van to arrive or contend with a missed-delivery card.

Basically, customers who want both the convenience of placing orders online and better control of their time find click-and-collect a better option.

Last December 2011, IMRG (Interactive Media in Retail Group) reported a ?significant rise in the percentage of click-and-collect e-retail sales in the 3rd quarter of 2011?. This accounted for 10.4% of all e-retail sales in that quarter. More specifically, the gain was 7.4%, which was also the strongest quarterly gain since IMRG started collecting this data.

Clearly, this particular service is gaining popularity. But how do you meet the rising demand in this area?

A click-and-collect service requires a highly synchronised ecosystem. You don’t want to have a customer order items from your online store, drive a couple of minutes from his house to your nearest outlet, only to find out that one of the items is no longer available.

This can only work if all systems involved are interconnected. Changes in the inventory in your individual outlets should reflect on your database in real time. In turn, these changes have to be reflected instantly on your online store. Conversely, once a buyer has picked items online and is already directed to a local outlet, those items have to be reserved there.

But that’s not all. Your system has to be seamless enough to support fast and reliable service. You don’t want your buyer to have to wait a long time before the items are ready for pick-up. It also has to be capable of tracking the status of ordered products, handling uncollected orders, and monitoring inventory.

By implementing an integrated e-commerce system, these won’t be the only things you?d be able to do. You can even add more value to your service. For example, you can connect to your CRM and learn more about your customers? purchase history, buying habits, and preferences.

That way, it would be easier for you to provide a faster and more convenient buying experience for them in the future.

Click-and-collect is a very promising way to increase your sales and improve customer loyalty.

Check our similar posts

EcoVaro ? ESOS Solution on a Cloud

The UK?s Energy Saving Opportunity Scheme ? and all others in the EU stable – is bound to generate huge quantities of data beyond the reach of processing on standalone computers. This leaves some companies in the mandatory sector between a rock and a hard place. They already have to divert scarce talent to draft compliance reports. Now they face purchasing equipment with big data processing power.

The more astute are turning to cloud computing solutions like EcoVaro in increasing numbers. They are also keen to benefit from remote secure backup. .

Increasing migration to public clouds has caused a growth in niche big data consultants. EcoVaro is one of these. We want to do more than simply open up a port and leave you to become familiar with our technology. We service a growing group of companies who want us to analyse their energy usage reports, and isolate the main demand drivers so they know where to start saving.

We are consumer-centric energy consultants with the emphasis on corporates and sme?s. We offer more than just big data processing facilities. We also help set up your dashboard and are full of practical ideas you can use to start trimming energy costs right away. So please treat us as your affordable energy partner who really wants to help.

Finally, contact EcoVaro for a discussion.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Monitoring Water Banks with Telemetrics

Longstanding droughts across South Australia are forcing farmers to rethink the moisture in the soil they once regarded as their inalienable right. Trend monitoring is an essential input to applying pesticides and fertilisers in balanced ratios. Soil moisture sensors are transmitting data to central points for onward processing on a cloud, and this is making a positive difference to agricultural output.

Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.

The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of online data and a safe place somewhere in the cloud to curate it. Sentek is in the lead in places as remote as Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.

This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily re-positioned to other locations as crops rotate.

Peter Buss is convinced that measurement is a means to the end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By monitoring that need accurately, that water can be saved until later when the plant really needs it.? He goes on to add that the crop is the ultimate sensor, and that ?we should ask the plant what it needs?.

This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return. The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.

There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us. ecoVaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?