Maturing Into CMMI

 

In all likelihood, the reason why you landed on this page was because you were seeking CMMI experts to help you meet the demands of a growing number of potential clients who require CMMI compliance.

Whether or not you’re here for that reason, you might want to know why CMMI or Capability Maturity Model Integration is steadily becoming a common denominator among highly successful software and engineering development companies. If you stay for a while, we can show you how CMMI can substantially increase your organisation’s chances of:

  • reducing development costs;
  • acquiring new customers and retaining old ones;
  • beating deadlines;
  • bringing down development time;
  • increasing the overall quality of your products and services; and
  • improving the level of satisfaction of customers, employees, and all other stakeholders.

Surely, no organisation can be too small or too big to aspire for such benefits of attaining high levels of maturity and capability.

If you want to look beyond Maturity Level ratings, then you’ve come to the right place. We focus on introducing CMMI principles and blending them into your organisation’s culture to achieve a truly superior and sustainable business advantage. Compliance will then be an inevitable offshoot of the actions you make.

Likewise, if you simply want to obtain a deeper understanding of CMMI and learn how it can be applied either to your entire organisation or to specific projects, we’d be happy to assist you in that regard as well.

Finally, when you’re ready, we can also conduct CMMI appraisals either for benchmarking purposes or simply for determining how well your process improvement initiatives are going.

CMMI Consulting

Are you worried that implementing CMMI might entail an overhaul of your current processes? Don’t be.

CMMI is all about improving current processes, not replacing them. Ideally, the final result of all process improvement activities should be hinged on your own business objectives and context, so we’ll make sure it remains that way when we work with you.

We rely on our extensive knowledge and experience in CMMI, engineering, software development, and technologies as well as in change and project management in providing model-based process improvement services. Whether you’re gearing up for an appraisal or simply want to employ CMMI-based practices, these are the things we can do for you.

  • Help you interpret how CMMI can be implemented in relation to your business.
  • Assist in convincing sponsors and stakeholders to support your CMMI implementation initiatives.
  • Introduce the necessary training to all individuals who need to undertake them.
  • Conduct a Gap Analysis to find out where your company’s current processes stand relative to their CMMI specifications.
  • Assemble a process group that will champion your process improvement initiatives. We’ll facilitate effective collaboration among its team members, transforming them into a cohesive force designed to carry out plans and motivate everyone else down the line.
  • Introduce tools and practices that will improve the efficiency of our process improvement initiatives.
  • Carry out periodic evaluations and produce reports to provide sponsors and stakeholders a clear picture of our progress.

CMMI Training

Still not convinced CMMI is right for you? There’s only one way to fully grasp the benefits of implementing CMMI – take the Introduction to CMMI course. Although what happens next is entirely up to you, we’re pretty sure you’ll make the right decision after passing it.

Do you need to include people from your organisation in a SCAMPI (Standard CMMI Appraisal Method for Process Improvement) team? They’ll have to undergo this course too. The Introduction to CMMI is for systems and software engineering managers and practitioners, appraisal team members, process group members, and basically anyone who want to grasp CMMI fundamentals.

This is what you’ll be able to do after going through 3 days of lectures and exercises:

  • Gain a deeper understanding of the various components of CMMI-DEV models and their relationships.
  • Discuss the process areas in CMMI-DEV models.
  • Extract and interpret aspects in the model relevant to your own organisation’s processes.

We also offer highly specialised training and workshops such as those for:

  • Achieving High Maturity Levels
  • Top Executives
  • Team Building in Preparation for Appraisals

CMMI Appraisal

An organisation new to CMMI will want to know first how far their current processes are relative to the implementation of model-based improvements in order to determine the resources and time that have to be spent to get there.

Similarly, an organisation already well acquainted with CMMI and has begun taking steps in improving processes, will eventually want to know how close it has come to the Maturity Level it has aimed for.

In both cases, these organisations will have to be assessed by a qualified CMMI appraiser to obtain an accurate picture of their current status. We can perform appraisals on either your entire organisation or on specific projects/practices within a process area. Our appraisers can conduct the following SCAMPI (Standard CMMI Appraisal Method for Process Improvement) appraisals:

  • SCAMPI Class A – This is what you’ll need if you’re aiming for a level rating.
  • SCAMPI Class B – You may want to use this for process reviews or for preparing for a SCAMPI Class A.
  • SCAMPI Class C or Gap Analysis – We typically conduct this for organisations who have yet to implement CMMI-based initiatives so that they can design the most cost-effective road map for the implementation proper.

Check our similar posts

Failure Mode and Effects Analysis

 

Any business in the manufacturing industry would know that anything can happen in the development stages of the product. And while you can certainly learn from each of these failures and improve the process the next time around, doing so would entail a lot of time and money.
A widely-used procedure in operations management utilised to identify and analyse potential reliability problems while still in the early stages of production is the Failure Mode and Effects Analysis (FMEA).

FMEAs help us focus on and understand the impact of possible process or product risks.

The FMEA method for quality is based largely on the traditional practice of achieving product reliability through comprehensive testing and using techniques such as probabilistic reliability modelling. To give us a better understanding of the process, let’s break it down to its two basic components ? the failure mode and the effects analysis.

Failure mode is defined as the means by which something may fail. It essentially answers the question “What could go wrong?” Failure modes are the potential flaws in a process or product that could have an impact on the end user – the customer.

Effects analysis, on the other hand, is the process by which the consequences of these failures are studied.

With the two aspects taken together, the FMEA can help:

  • Discover the possible risks that can come with a product or process;
  • Plan out courses of action to counter these risks, particularly, those with the highest potential impact; and
  • Monitor the action plan results, with emphasis on how risk was reduced.

Find out more about our Quality Assurance services in the following pages:

What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Volvo Dublin achieved Zero Landfill Status

The sprawling New River Valley Volvo plant in Dublin, Virginia slashed its electricity bill by 25% in a single year when it set its mind to this in 2009. It went on to become the first carbon-neutral factory in 2012 after replacing fossil energy with renewable power. Further efforts rewarded it with zero-landfill status in 2013. ecoVaro decided to investigate how it achieved this latest success.

Volvo Dublin?s anti-landfill project began when it identified, measured and evaluated all liquid and solid waste sources within the plant (i.e. before these left the works). This quantified data provided its environmental project team with a base from which to explore options for reusing, recycling and composting the discards.

Several decisions followed immediately. Volvo instructed its component suppliers to stop using cardboard boxes and foam rubber / Styrofoam as packaging, in favour of reusable shipping containers. This represented a collaborative saving that benefited both parties although this was just a forerunner of what followed.

Next, Volvo?s New River Valley truck assembly plant turned its attention to the paint shop. It developed methods to trap, reconstitute and reuse solvents that flushed paint lines, and recycle paint sludge to fire a cement kiln. The plant cafeteria did not escape attention either. The environment team made sure that all utensils, cups, containers and food waste generated were compostable at a facility on site.

The results of these simple, and in hindsight obvious decisions were remarkable. Every year since then Volvo has generated energy savings equivalent to 9,348 oil barrels or if you prefer 14,509 megawatts of electricity. Just imagine the benefits if every manufacturing facility did something similar everywhere around the world.

By 2012, the New River Valley Volvo Plant became the first U.S. facility to receive ISO 50001 energy-management status under a government-administered process. Further technology enhancements followed. These included solar hot water boilers and infrared heating throughout the 1.6 million square foot (148,644 square meter) plant, building automation systems that kept energy costs down, and listening to employees who were brim-full with good ideas.

The Volvo experience is by no means unique although it may have been ahead of the curve. General Motors has more than 106 landfill-free installations and Ford plans to reduce waste per vehicle by 40% between 2010 and 2016. These projects all began by measuring energy footprints throughout the process. ecoVaro provides a facility for you to do this too.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?