Operational Efficiency Initiatives

When was the last time you checked your technology spending against your IT infrastructure’s contribution to the bottom line?

Chances are, what’s happening underneath all those automated processes, expensive hardware, and fancy graphical user interfaces is not doing your bottom line any good.

If you don’t keep a watchful eye, your IT operations can easily nurture a lot of wastage and unnecessary costs. Underutilised servers, duplicate processes, poorly managed bandwidths, and too much complexity are among the common culprits.

For minor problems, we can eliminate wastage by setting up some technology enhancements, instilling best practices, and performing a few tweaks. However, if you’re not adequately trained on how to go about with it, your band-aid solutions can add more complexity to the mix.

Of course, there will always come a time when you will have to spend on new technologies to maintain the overall efficiency of your IT infrastructure. Whether you intend to purchase new hardware or software applications or build an entirely new infrastructure, the sheer cost of such undertakings warrants seeking expert advice.

Failure to do so can result in fragmented resources lacking in cohesiveness, which don’t contribute to efficiency at all.

Our solutions for improving operational efficiencies cover the entire spectrum: from planning what to buy, optimising what you’ve already bought, to making your team comfortable with them all. Please find time to view our solutions below and uncover ways to drive those profits up even as you work within your budget.

 

More Operational Review Blogs

 

Carrying out an Operational Review

 

Operational Reviews

 

Operational Efficiency Initiatives

 

Operational Review Defined

 

Check our similar posts

Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Proactive Preventative Maintenance: How IoT and Field Service Management Software Helps

FieldElite, our mobile workforce management software, has been key to several industries? return on investment. Whether it’s for plumbing, electrical, property management, cleaning, and maintenance, FieldElite has provided data centralisation for efficient management of these business activities. 

Field service management software is important to utilise current workload, and also helps resolve future issues. We’re talking about a proactive approach to preventative maintenance. 

How exactly do field service managements help in preventative maintenance? 

The answer lies in how field service management is interlinked with IoT in predicting future jobs for the mobile service industry.  

What is IoT? 

Simply put, the Internet of Things (IoT) is a network of devices and sensors connected to the internet. These ?things? (e.g. your smartphone or smartwatch) enable data to be sent and be received without human intervention.

Fundamentally, IoT is about devices being connected to the internet to allow remote monitoring

For many years now, remote monitoring for IT infrastructure has been widely used. 

What’s new that we’re experiencing right now is even the smallest devices ? individual light bulbs and sensors ? can have a network and internet connection, allowing entire systems to be monitored in great detail. 

Implementing IoT and accessing data can be challenging for most service organisations. However, when combined with predictive analytics and field management software, it can have a huge potential impact on individual businesses and the service industry as a whole. 

What is Preventative Maintenance? 

Preventive maintenance refers to regular, routine maintenance to help keep equipment up and running, preventing any unplanned downtime and expensive costs from unanticipated equipment failure. 

The goal of preventative maintenance is to decrease the likelihood of a machine or an equipment’s failure by performing regular maintenance. 

Preventative management can be very complex, especially for companies with a fleet of equipment or customers. It requires careful planning and scheduling of maintenance on equipment before there is an actual problem. 

Also, preventive maintenance is evolving. It’s not just about scheduling the same work every month to prevent failure anymore. Today, working smarter with better information about equipment conditions is critical to ensure maintenance is effective.

That’s where IoT and field service management software, like FieldElite, comes in. Together, they organise and carry out preventive maintenance needs for service industries. 

How IoT and FieldElite Helps in Preventative Maintenance

With FieldElite and IoT technology, you get the best in preventive maintenance management.

  • Evaluation of equipment or machines ? the condition of machines or equipment is evaluated in order to predict when maintenance needs to be performed. 
  • Automated work order ? automated time-based work order creation
  • Full condition-based plans allows you to do the following:
    • Right-size your maintenance work
    • Lower costs
    • Extend the life of your or customer?s assets 
  • Quicker reporting ? due to its efficient and automated nature, IoT and field service management software can reduce a field technician?s average report time from two weeks to two days, therefore boosting your cash flow! 

That’s the most important result a mobile service management software can produce (in connection with preventative maintenance). It’s cost-saving! This can be achieved over routine or time-based preventive maintenance, as tasks are only performed when they are needed. 

The Internet of Things (IoT) and field service management software is changing field service as we know it. 

Companies who adapt and utilise these technologies will benefit the most from the resulting competitive advantage of preventative maintenance. 

Start elevating every field service experience now!  

Our field service software, FieldElite helps you: 
  • Accepts jobs in the field
  • Automate appointment scheduling
  • Manage scheduled jobs 
  • Get real-time visibility into all operations
  • Have a clear and easy viewing of job locations 
  • Resolve field service calls faster 
  • Enable mobile workers to get the job done right
  • Keep customers updated at every step 
  • Create quotations and accept payments 
  • Analyse efficient reports from field technicians
  • Helps in proper preventative maintenance management. 

Learn how to schedule jobs to field workers with ease. Check out FieldElite

CONTACT US

  • We seek to understand your technology and business challenges
  • We tailor a demonstration of our platform and solutions to align to your specific needs
  • We answer any questions and make sensible recommendations
  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Heijunka is & How it Smooths Call Centre Production

The Japanese word Heijunka, pronounced hi-JUNE-kuh means ?levelling? in the sense of balancing workflows. It helps lean organizations shift priorities in the face of fluctuating customer demand. The goal is to have the entire operation working at the same pace throughout, by continuously adjusting the balance between predictability, flexibility, and stability to level out demand.

Henry Ford turned the American motor manufacturing industry upside down by mass-producing his iconic black motor cars on two separate production lines. In this photograph, body shells manufactured upstairs come down a ramp and drop onto a procession of cars almost ready to roll in 1913.

Smoothing Production in the Call Centre Industry

Call Centres work best in small teams, each with a supervisor to take over complex conversations. In the past, these tended to operate in silos with each group in semi-isolation representing a different set of clients. Calls came through to operators the instant the previous ones concluded. By the law of averages, inevitably one had more workload than the rest at a particular point in time as per this example.

Modern telecoms technology makes it possible to switch incoming lines to different call centre teams, provided these are multi-skilled. A central operator controls this manually by observing imbalanced workflows on a visual system called a Heijunka Box. The following example comes from a different industry, and highlights how eight teams share uneven demand for six products.

This departure from building handmade automobiles allowed Henry to move his workforce around to eliminate bottlenecks. For example, if rolls of seat leather arrived late he could send extra hands upstairs to speed up the work there, while simultaneously slowing chassis production. Ford had the further advantage of a virtual monopoly in the affordable car market. He made his cars at the rate that suited him best, with waiting lists extending for months.

A Modern, More Flexible Approach

Forces of open competition and the Six Sigma drive for as-close-to-zero defects dictates a more flexible approach, as embodied in this image published by the Six Sigma organisation. This represents an ideal state. In reality, one force usually has greater influence, for example decreasing stability enforces a more flexible approach.

Years ago, Japanese car manufacturer Toyota moved away from batching in favour of a more customer-centric approach, whereby buyers could customise orders from options held in stock for different variations of the same basic model. The most effective approach lies somewhere between Henry Ford?s inflexibility and Toyota?s openness, subject to the circumstances at the moment.

A Worked Factory Example

The following diagram suggests a practical Heijunka application in a factory producing three colours of identical hats. There are two machines for each option, one or both of which may be running. In the event of a large order for say blue hats, the company has the option of shifting some blue raw material to the red and green lines so to have the entire operation working at a similar rate.

Predictability, Flexibility, and Stability at Call Centre Service

The rate of incoming calls is a moving average characterised by spikes in demand. Since the caller has no knowledge whether high activity advisories are genuine, it is important to service them as quickly as possible. Lean process engineering provides technology to facilitate flexibility. Depending on individual circumstances, each call centre may have its own definition of what constitutes an acceptably stable situation.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?