Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Could Kanban Be?Best for Knowledge Workers?

Knowledge Workers include academics, accountants, architects, doctors, engineers, lawyers, software engineers, scientists and anybody else whose job it is to think for a living. They are usually independent-minded people who do not appreciate project managers dishing out detailed orders. Kanban project management resolves this by letting them choose the next task themselves.

The word ?Kanban? comes from a Japanese word meaning ?billboard? or ?signboard?. Before going into more detail how this works let’s first examine how Japanese beliefs of collaboration, communication, courage, focus on value, respect for people and a holistic approach to change fit into the picture.

The Four Spokes Leading to the Kanban Hub

  1. Visualise the Workflow ?You cannot improve what you cannot see. The first step involves team members reducing a project to individual stages and posting these on a noticeboard.
  2. Create Batches ? These stages are further reduced to individual tasks or batches that are achievable within a working day or shift. More is achievable when we do not have to pick up where we left off the previous day.
  3. Choose a Leader the Team Respects – Without leadership, a group of people produces chaotic results. To replace this with significant value they need a leader, and especially a leader they can willingly follow.
  4. Learn and Improve Constantly ? Kaizen or continuous improvement underpins the Japanese business model, and respects that achievement is a step along the road, and not fulfilment.

The Kanban Method in Practice

Every Kanban project begins with an existing process the participants accept will benefit from continuous change. These adjustments should be incremental, not radical step-changes to avoid disrupting the stakeholders and the process. The focus is on where the greatest benefits are possible.

Anybody in the team is free to pull any batch from the queue and work on it in the spirit of collaboration and cooperation. That they do so, should not make any waves in a culture of respect for people and a holistic approach to working together. All it needs is the courage to step out of line and dream what is possible.

The Kanban Project Method ? Conclusions and Thoughts

Every engine needs some sort of fuel to make it go. The Kanban project management method needs collaboration, communication, courage, focus on value, respect for people and a holistic approach to work. This runs counter to traditional western hierarchies and probably limits its usefulness in the West.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Sub-Metering did for Nissan in Tennessee

When Nissan built its motor manufacturing plant in Smyrna 30 years ago, the 5.9 million square-foot factory employing over 8,000 people was state of art. After the 2005 hurricane season sky-rocketed energy prices, the energy team looked beyond efficient lighting at the more important aspect of utility usage in the plant itself. Let’s examine how they went about sub-metering and what it gained for them.

The Nissan energy team faced three challenges as they began their study. They had a rudimentary high-level data collection system (NEMAC) that was so primitive they had to transfer the data to spread-sheets to analyse it. To compound this, the engineering staff were focused on the priority of getting cars faster through the line. Finally, they faced the daunting task of making modifications to reticulation systems without affecting manufacturing throughput. But where to start?

The energy team chose the route of collaboration with assembly and maintenance people as they began the initial phase of tracking down existing meters and detecting gaps. They installed most additional equipment during normal service outages. Exceptions were treated as minor jobs to be done when convenient. Their next step was to connect the additional meters to their ageing NEMAC, and learn how to use it properly for the first time.

Although this was a cranky solution, it had the advantage of not calling for additional funding which would have caused delays. However operations personnel were concerned that energy-saving shutdowns between shifts and over weekends could cause false starts. ?We’ve already squeezed the lemon dry,? they seemed to say. ?What makes you think there?s more to come??

The energy team had a lucky break when they stumbled into an opportunity to prove their point early into implementation. They spotted a four-hourly power consumption spike they knew was worth examining. They traced this to an air dryer that was set to cyclical operation because it lacked a dew-point sensor. The company recovered the $1,500 this cost to fix, in an amazing 6 weeks.

Suitably encouraged and now supported by the operating and maintenance departments, the Smyrna energy team expanded their project to empower operating staff to adjust production schedules to optimise energy use, and maintenance staff to detect machines that were running without output value. The ongoing savings are significant and levels of shop floor staff motivation are higher.

Let’s leave the final word to the energy team facilitator who says, ?The only disadvantage of sub-metering is that now we can’t imagine doing without it.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Quality Assurance

 

There is a truism that goes “The bitterness of poor quality is remembered long after the sweetness of low price has faded from memory”.

While every consumer can probably relate to this idea, business enterprises offering goods and services are the ones that should heed this the most.

Quality Management Systems

The concept of quality was first introduced in the 1800’s. Goods were then still mass-produced, created by the same set of people, with a few individuals assigned to do some “tweaking” on the product to bring it to acceptable levels. Their idea of quality at that time may not have been that well-defined, but it marked the beginnings of product quality and customer satisfaction as we know it now.

Since then, quality has developed into a very basic business principle that every organisation should strive to achieve. Yet while every business recognises the importance of offering product and service quality, it is not something that can be achieved overnight.

If you’ve been in any type of business long enough, you should know that there is no “quick-fix” to achieving quality. Instead, it is an evolving process that needs to be continually worked on. And this is where the importance of having a workable Quality Management System (QMS) in an organisation comes in.

Whatever Quality tools and processes you need to implement the change needed in your organisation, we can help you with it. We are ready to work in partnership with your team to develop strategic systems which will produce significant performance improvements geared towards the achievement of quality.

What is a Quality Management System?

A Quality Management System is defined as the set of inter-related objectives, processes, and operating procedures that organisations use as a guide to help them implement quality policies and attain quality objectives.

Needless to say, the ultimate goal of every quality management system is to establish quality as a core value of the company among all employees, and across all products and services. Why? Because quality services make for happy customers, and satisfied customers ensure continued business for the company.

A Quality Management System does not stop with simply having a set of guidelines that the leaders of a company can easily have their organisation members accept and adhere to. Rather, effective QMS can be implemented when management provides a culture of pride and patience, which will inspire acceptance of individual and group responsibility.

In this manner, not only the heads of the organisation but the employees as well, will develop the desire to achieve company goals that will benefit:

  • All contributing teams;
  • The customers; and
  • The company as a whole.

Find out more about our Quality Assurance services in the following pages:

Ready to work with Denizon?