Technology and process improvement

Tightening organisational flow to improve productivity and minimise costs is a growing concern for many businesses post the Global Financial Crisis. Businesses can no longer afford to waste time and personnel on inefficient processes. Organisations using either Six Sigma or Lean techniques better manage their existing resources to maximise product out-put. Both of these techniques involve considerable evaluation of current processes.

What is Six Sigma?

Six Sigma is an organisational management strategy that evaluates processes for variation. In the Six Sigma model, variation equates waste. Eliminating variation for customer fulfilment allows a business to better serve the end-user. In this thought model, the only way to streamline processes is to use statistical data. Each part of a process must be carefully recorded and analysed for variation and potential improvements. The heart of the strategy embodied by Six Sigma is mathematical. Every process is subject to mathematical analysis and this allows for the most effective problem solving.

What is a Lean Model?

Lean businesses do not rely on mathematical models for improvement. Instead, the focus is on reducing steps in the customer delivery cycle, which do not add value to the final deliverable. For example, maintaining excess inventory or dealing with shortages would both be examples of waste behaviour. Businesses that operate using Lean strategies have strong cash flow cycles. One of the best and most famous examples of Lean in action is the Toyota Production System (TPS). In this system, not only is inventory minimised, but physical movement for employees also remains sharply controlled. Employees are able to reach everything needed to accomplish their tasks, without leaving the immediate area. By reducing the amount of movement needed to work, companies also remove wasted employee time.

Industry Applications for Lean and Six Sigma

Lean businesses reduce the number of steps between order and delivery. The less inventory on hand, the less it costs a business to operate. In industries where it is possible to create to order, Lean thinking offers significant advantages. Lean is best utilised in mature businesses. New companies, operating on a youthful model, may not be able to identify wasteful processes. Six Sigma has shown its value across industries through several evolution’s. Its focus on quality of process makes it a good choice for even brand new businesses. The best use is the combination of the two strategies. With the Lean focus on speed and the Six Sigma focus on quality combined, the two organisational processes create synergy. By itself, Lean does not help create stable, repeating success. Six Sigma does not help increase speed and reduce non value-added behaviours. Combined, these two strategies offer incredible value to every business in cost savings.

Using Technology to Implement Lean Six Sigma

Automation processes represent an opportunity for businesses to implement a combination of both Lean and Six Sigma strategies. Any technology that replaces the need for direct human oversight reduces costs and increases productivity. A few examples of potentially cost saving IT solutions include document scanning, the Internet, and automated workflow systems.

  • Document Scanning – Reducing dependency on paper copies follows both Lean and Six Sigma strategies. It is a Lean addition in that it allows employees to access documents instantly from any physical location. It is Six Sigma compliant in that it allows a reduction on process variation, since there is no bottleneck on the flow of information.
  • The Internet – The automation potential offered by the Internet is limitless. Now, businesses can enter orders, manage logistics and perform customer service activities from anywhere, through a hosted portal. With instant access to corporate processes from anywhere, businesses can manage workflow globally, allowing them to realise cost savings from decentralisation.
  • Automated Work Systems – One of the identified areas of waste in any business is processing time. The faster orders are processed and delivered, the greater the profits for the company and the less the expense per order. When orders sit waiting for attention, they represent lost productivity and waste. Automated work systems monitor workflow and alert users when an item sits longer than normal. These systems can also reroute work to an available employee when the original worker is tied up.

Each of these IT solutions provides a method for businesses to either reduce the number of steps in a process or improve the quality of the process for improved customer service.

Identifying Areas for Lean Six Sigma Implementation

Knowing that improved processes result in improved profits, identifying areas for improvement is the next step. There are several techniques for creating tighter processes with less waste and higher quality. Value Stream Mapping helps business owners and managers identify areas of waste by providing a visual representation of the total process stream. Instead of improving single areas for minimal increases in productivity, VSM shows the entire business structure and flow, allowing management to target each area of slow down for maximum improvement in all areas.

Seeing the areas of waste helps management better determine how processes should work to best obtain the desired outcomes. Adding in automated processes helps with improved process management, when put in place with a complete understanding of current systems and their weaknesses. Start with mapping and gain a bird’s-eye view of the situation, in order to make the changes needed for improvement.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

The Connection Between Six Sigma and CRM

Six Sigma is an industrial business strategy directed at improving the quality of process outputs by eliminating errors and system variables. The end objective is to achieve a state where 99.99966% of events are likely to be defect free. This would yield a statistical rating of Sigma 6 hence the name.

The process itself is thankfully more user-friendly. It presents a model for evaluating and improving customer relationships based on data provided by an automated customer relations management (CRM) system. However in the nature of human interaction we doubt the 99.99966% is practically achievable.

Six Sigma Fundamentals

The basic tenets of the business doctrine and the features that set off are generally accepted to be the following:

  1. Continuous improvement is essential for success
  1. Business processes can be measured and improved
  1. Top down commitment is fundamental to sustained improvement
  1. Claims of progress must be quantifiable and yield financial benefits
  1. Management must lead with enthusiasm and passion
  1. Verifiable data is a non-negotiable (no guessing)

Steps Towards the Goal

The five basic steps in Six Sigma are define the system, measure key aspects, analyse the relevant data, improve the method, and control the process to sustain improvements. There are a number of variations to this DMAIC model, however it serves the purpose of this article. To create a bridge across to customer relationships management let us assume our CRM data has thrown out a report that average service times in our fast food chicken outlets are as follows.

<2 Minutes 3 to 8 Minutes 9 to 10 Minutes >10 Minutes
45% 30% 20% 5%
Table: Servicing Tickets in Chippy?s Chicken Caf?s

Using DMAIC to unravel the reasons behind this might proceed as follows

  • Define the system in order to understand the process. How are customers prioritised up front, and does the back of store follow suit?
  • Break the system up into manageable process chunks. How long should each take on average? Where are bottlenecks most likely to occur?
  • Analyse the ticket servicing data by store, by time of day, by time of week and by season. Does the type of food ordered have a bearing?
  • Examine all these variables carefully. Should there for example be separate queues for fast and slower orders, are there some recipes needing rejigging
  • Set a goal of 90% of tickets serviced within 8 minutes. Monitor progress carefully. Relate this to individual store profitability. Provide recognition.

Conclusion

A symbiotic relation between CRM and a process improvement system can provide a powerful vehicle for evidencing customer care and providing feedback through measurable results. Denizon has contributed to many strategically important systems.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
The Better Way of Applying Benford’s Law for Fraud Detection

Applying Benford’s Law on large collections of data is an effective way of detecting fraud. In this article, we?ll introduce you to Benford’s Law, talk about how auditors are employing it in fraud detection, and introduce you to a more effective way of integrating it into an IT solution.

Benford’s Law in a nutshell

Benford’s Law states that certain data sets – including certain accounting numbers – exhibit a non-uniform distribution of first digits. Simply put, if you gather all the first digits (e.g. 8 is the first digit of ?814 and 1 is the first digit of ?1768) of all the numbers that make up one of these data sets, the smallest digits will appear more frequently than the larger ones.

That is, according to Benford’s Law,

1 should comprise roughly 30.1% of all first digits;
2 should be 17.6%;
3 should be 12.5%;
4 should be 9.7%, and so on.

Notice that the 1s (ones) occur far more frequently than the rest. Those who are not familiar with Benford’s Law tend to assume that all digits should be distributed uniformly. So when fraudulent individuals tinker with accounting data, they may end up putting in more 9s or 8s than there actually should be.

Once an accounting data set is found to show a large deviation from this distribution, then auditors move in to make a closer inspection.

Benford’s Law spreadsheets and templates

Because Benford’s Law has been proven to be effective in discovering unnaturally-behaving data sets (such as those manipulated by fraudsters), many auditors have created simple software solutions that apply this law. Most of these solutions, owing to the fact that a large majority of accounting departments use spreadsheets, come in the form of spreadsheet templates.

You can easily find free downloadable spreadsheet templates that apply Benford’s Law as well as simple How-To articles that can help you to implement the law on your own existing spreadsheets. Just Google “Benford’s law template” or “Benford’s law spreadsheet”.

I suggest you try out some of them yourself to get a feel on how they work.

The problem with Benford’s Law when used on spreadsheets

There’s actually another reason why I wanted you to try those spreadsheet templates and How-To’s yourself. I wanted you to see how susceptible these solutions are to trivial errors. Whenever you work on these spreadsheet templates – or your own spreadsheets for that matter – when implementing Benford’s Law, you can commit mistakes when copy-pasting values, specifying ranges, entering formulas, and so on.

Furthermore, some of the data might be located in different spreadsheets, which can likewise by found in different departments and have to be emailed for consolidation. The departments who own this data will have to extract the needed data from their own spreadsheets, transfer them to another spreadsheet, and send them to the person in-charge of consolidation.

These activities can introduce errors as well. That’s why we think that, while Benford’s Law can be an effective tool for detecting fraud, spreadsheet-based working environments can taint the entire fraud detection process.

There?s actually a better IT solution where you can use Benford’s Law.

Why a server-based solution works better

In order to apply Benford’s Law more effectively, you need to use it in an environment that implements better controls than what spreadsheets can offer. What we propose is a server-based system.

In a server-based system, your data is placed in a secure database. People who want to input data or access existing data will have to go through access controls such as login procedures. These systems also have features that log access history so that you can trace who accessed which and when.

If Benford’s Law is integrated into such a system, there would be no need for any error-prone copy-pasting activities because all the data is stored in one place. Thus, fraud detection initiatives can be much faster and more reliable.

You can get more information on this site regarding the disadvantages of spreadsheets. We can also tell you more about the advantages of server application solutions.

Ready to work with Denizon?