The Connection Between Six Sigma and CRM

Six Sigma is an industrial business strategy directed at improving the quality of process outputs by eliminating errors and system variables. The end objective is to achieve a state where 99.99966% of events are likely to be defect free. This would yield a statistical rating of Sigma 6 hence the name.

The process itself is thankfully more user-friendly. It presents a model for evaluating and improving customer relationships based on data provided by an automated customer relations management (CRM) system. However in the nature of human interaction we doubt the 99.99966% is practically achievable.

Six Sigma Fundamentals

The basic tenets of the business doctrine and the features that set off are generally accepted to be the following:

  1. Continuous improvement is essential for success
  1. Business processes can be measured and improved
  1. Top down commitment is fundamental to sustained improvement
  1. Claims of progress must be quantifiable and yield financial benefits
  1. Management must lead with enthusiasm and passion
  1. Verifiable data is a non-negotiable (no guessing)

Steps Towards the Goal

The five basic steps in Six Sigma are define the system, measure key aspects, analyse the relevant data, improve the method, and control the process to sustain improvements. There are a number of variations to this DMAIC model, however it serves the purpose of this article. To create a bridge across to customer relationships management let us assume our CRM data has thrown out a report that average service times in our fast food chicken outlets are as follows.

<2 Minutes 3 to 8 Minutes 9 to 10 Minutes >10 Minutes
45% 30% 20% 5%
Table: Servicing Tickets in Chippy?s Chicken Caf?s

Using DMAIC to unravel the reasons behind this might proceed as follows

  • Define the system in order to understand the process. How are customers prioritised up front, and does the back of store follow suit?
  • Break the system up into manageable process chunks. How long should each take on average? Where are bottlenecks most likely to occur?
  • Analyse the ticket servicing data by store, by time of day, by time of week and by season. Does the type of food ordered have a bearing?
  • Examine all these variables carefully. Should there for example be separate queues for fast and slower orders, are there some recipes needing rejigging
  • Set a goal of 90% of tickets serviced within 8 minutes. Monitor progress carefully. Relate this to individual store profitability. Provide recognition.

Conclusion

A symbiotic relation between CRM and a process improvement system can provide a powerful vehicle for evidencing customer care and providing feedback through measurable results. Denizon has contributed to many strategically important systems.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Big Energy Data Management

Recent times have seen the advent of cloud based services and solutions where energy data is being stored in the cloud and being accessed from anywhere, anytime through remote mobile devices. This has been made possible by web-based systems that can usually bring real-time meter-data into clear view allowing for proactive business and facility management decisions. Some web based systems may even support multi utility metering points and come in handy for businesses operating multiple sites.

Whereas all this has been made possible by increased use of smart devices/ intelligent energy devices that capture data at more regular intervals; the challenge facing businesses is how to transform the large data/big volume of data into insights and action plans that would translate into increased performance in terms of increased energy efficiency or power reliability.

A solution to this dilemma facing businesses that do not know how to process big energy data, may lie in energy management software. Energy management software?s have the capability to analyse energy consumption for, electricity, gas, water, heat, renewables and oil. They enable users to track consumption for different sources so that consumers are able to identify areas of inefficiency and where they can reduce energy consumption, Energy software also helps in analytics and reporting. The analytics and reporting features that come with energy software are usually able to:

? Generate charts and graphs ? some software?s give you an option to select from different graphs

? Do graphical comparisons e.g. generate graphs of the seasonal average for the same season and day type

? Generate reports that are highly customisable

While choosing from the wide range of software available, it is important for businesses to consider software that has the capacity to support their data volume, software that can support the frequency with which their data is captured and support the data accuracy or reliability.

Energy software alone may not make the magic happen. Businesses may need to invest in trained human resources in order to realise the best value from their big energy data. Experts in energy management would then apply human expertise to leverage the data and analyse it with proficiency to make it meaningful to one?s business.

Why Executives Fail & How to Avoid It

The ?Peter Principle? concerning why managers fail derives from a broader theory that anything that works under progressively more demanding circumstances will eventually reach its breaking point and fail. The Spanish philosopher Jos? Ortega y Gasset, who was decidedly anti-establishment added, “All public employees should be demoted to their immediately lower level, as they have been promoted until turning incompetent”.

The Peter Principle is an observation, not a panacea for avoiding it. In his book The Peter Principle Laurence J. Peter observes, “In a hierarchy every employee tends to rise to his level of incompetence … in time every post tends to be occupied by an employee who is incompetent to carry out its duties … Work is accomplished by those employees who have not yet reached their level of incompetence.”

Let’s find out what the drivers are behind a phenomenon that may be costing the economy grievously, what the warning signs are and how to try to avoid getting into the mess in the first place.

Drivers Supporting the Peter Principle

As early as 2009 Eva Rykrsmith made a valuable contribution in her blog 10 Reasons for Executive Failure when she observed that ?derailed executives? often find themselves facing similar problems following promotion to the next level:

The Two Precursors

  • They fail to establish effective relationships with their new peer group. This could be because the new member, the existing group, or both, are unable to adapt to the new arrangement.
  • They fail to build, and lead their own team. This could again be because they or their subordinates are unable to adapt to the new situation. There may be people in the team who thought the promotion was theirs.

The Two Outcomes

  • They are unable to adapt to the transition. They find themselves isolated from support groups that would otherwise have sustained them in their new role. Stress may cause errors of judgement and ineffective collaboration.
  • They fail to meet business objectives,?but blame their mediocre performance on critical touch points in the organization. They are unable to face reality. Either they resign, or they face constructive dismissal.

The Warning Signs of Failure

Eva Rykrsmith suggests a number of indicators that an individual is not coping with their demanding new role. Early signs may include:

  • Lagging energy and enthusiasm as if something deflated their ego
  • No clear vision to give to subordinates, a hands-off management style
  • Poor decision-making due to isolation from their teams? ideas and knowledge
  • A state akin to depression and acceptance of own mediocre performance

How to Avoid a ?Peter? in Your Organization

  • Use succession planning to identify and nurture people to fill key leadership roles in the future. Allocate them challenging projects, put them in think tanks with senior employees, find mentors for them, and provide management training early on. When their own manager is away, appoint them in an acting role. Ask for feedback from all concerned. If this is not positive, perhaps you are looking at an exceptional specialist, and not a manager, after all.
  • Consider the future, and not the past when interviewing for a senior management position. Ask about their vision for their part of the organization. How would they go about achieving it? What would the roles be of their subordinates in this? Ask yourself one very simple question; do they look like an executive, or are you thinking of rewarding loyalty.
  • How to Avoid Becoming a ?Peter??Perhaps you are considering an offer of promotion, or applying for an executive job. Becoming a ?Peter? at a senior level is an uncomfortable experience. It has cost the careers of many senior executives dearly. We all have our level of competence where we enjoy performing well. It would be pity to let blind ambition rob us of this, without asking thoughtful questions first. Executives fail when they over-reach themselves, it is not a matter of bad luck.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?