Succeed at Transformation

Despite the pomp and fanfare associated with launching corporate transformation programs, in reality very few of them succeed. According to a recent report by McKinsey the success rate is pegged below 40%. In addition, the same research indicates that defensive transformations – those undertaken as part of crisis management – have lower chances of success than progressive ones – those launched to streamline operations and foster growth. However, adopting certain strategies, like setting clear and high goals, and maintaining energy and engagement throughout the implementation phase, can really boost the project’s success rate. A key aspect of business transformation is IT transformation. This can be attributed to the fact that significant business change is either driven or influenced by technological change.

So what is IT Transformation?

IT transformation is basically a holistic reorganisation of the existing technological infrastructure that supports the company’s mission critical functions. In essence, IT transformation is not all about effecting change for the sake of change but involves systematic steps that align IT systems to business functions. To appreciate this approach, it is important to explore current trends in the business world where human resource, finance and IT transformations are being carried out in unison. This is being done to develop strong corporate centres that are leaner, agile and more productive that enhance greater synergies across all business functions.

IT transformation inevitably results in major changes of the information system’s technology, involving both hardware and software components of the system, the architecture of the system, the manner in which data is structured or accessed, IT control and command governance, and the components supporting the system. From this scope of works it is evident that IT transformation is a huge project that requires proper planning and implementation in order to succeed.

Tips to Improve Success in IT transformations Projects

1. Focus on Benefits not Functionality

The project plan should be more focused on benefits that can be accrued if the system is implemented successfully rather than system functionality. The benefits should be in line with business goals, for instance cost reduction and value addition. The emphasis should be on the envisaged benefits which are defined and outlined during the project authorisation. The business benefits outlined should be clear, feasible, compelling and quantifiable. Measures should be put in place to ensure that the benefits are clearly linked to the new system functionality.

2. Adopt a Multiple Release Approach

Typically most IT projects are planned with focus on a big launch date set in years to come. This approach is highly favoured because it simplifies stakeholder expectation management and avoids the complexity associated with multiple incremental releases. However, this approach misses the benefit of getting early critical feedback on functioning of the system. In addition, the long lead times often result in changes in project scope and loss of critical team members and stakeholders. IT transformation projects should be planned to deliver discrete portions of functionality in several releases. The benefit of multiple release approach is that it reduces project risks and most importantly allows earlier lessons learnt to be incorporated in future releases.

3. Capacity of the Organisation to confront Change

As pointed out, IT transformations result in significant changes in business operations and functions. Hence it is important that all business stakeholders should be reading from the same script in regards to changes expected. In addition, key stakeholders should be involved in crucial project stages and their feedback incorporated to ensure that the system is not only functional but business focused.

Check our similar posts

IT Systems Implementation

Are you ready to find out how your newly accepted IT system fares in the real world? Although a rigorous Acceptance testing process can spot a wide spectrum of flaws in a newly constructed IT system, there is no way it can identify all possible defects. The moment the IT system is delivered into the hands of actual end users and other stakeholders, it is effectively stepping out of a controlled and secure environment.

Thus, it is during this phase wherein issues having direct impact on the business can arise.

It is our duty to ensure that the Systems Implementation phase is carried out as thoroughly, professionally, and efficiently as possible.

Thoroughly, because we need to include all relevant data and other deliverables, eliminate hard-to-detect miscalculated results, and substantially reduce the probability of business and mission critical issues popping up in the future;

Professionally, because it is the best way to address the sensitive process of turning over a new system to users who have gotten used to the old one;

And efficiently, because we want to minimise the duration over which all stakeholders have to adapt to the new system and allow them to move on to the process of growing the business.

Preparation

Louis Pasteur once said, “Luck favours the mind that is prepared.”

While we certainly won’t leave anything to chance, we do put substantial weight on the Preparation stage of Systems Implementation. We’re so confident with the strategies we employ in Preparation, that we can assure you of an utterly seamless Deployment and Transition phase.

By this we mean that issues that may arise during Deployment and Transition will be handled smoothly and efficiently because your people will know exactly what to do.

Here’s how we will prepare your organisation for Deployment:

  • Identify all key players for the Systems Implementation phase and orient them on their specific roles. We’ll make sure they know what possible hitches may come their way and how to deal with them.
  • Identify all end users and their corresponding functions, then assign appropriate access rights.
  • Draw multi-layered contingency plans to capture and address each possible concern that may crop up during Deployment.
  • Prepare a systematic step-by-step procedure and checklist for the entire Deployment stage. Both of them should have been copied from a similar procedure and checklist used in the Acceptance testing phase.
  • Make all stakeholders understand the conditions required before Deployment can commence.
  • Set the appropriate environment so that all stakeholders know what to expect and when to expect them the moment Deployment commences.
  • Prepare Technical Services and Technical Support personnel for the gruelling mission ahead.
  • Make sure all communication processes are well coordinated so that everyone affected will know who to contact and how to get in touch with them when a problem arises.
  • Plan and schedule training sessions so that they can be conducted “just in time”. Training sessions conducted way ahead of Deployment are often useless because the trainees tend to forget about what they learned when the time comes to apply them. Similarly, training sessions conducted way after Deployment also become useless because trainees are seldom able to internalise instructions delivered during crash courses.

Deployment

There are two sets of issues to keep an eye on during Deployment:

  1. Issues directly related to the technology itself, e.g. application functionality and data integrity, and
  2. Issues emanating from the end users, i.e., their unwillingness to use the new system. One reason may be because they find the interface and procedures too confusing. Another would be due to other inconveniences that come with adapting to a new set of procedures.

Despite all the meticulous scrutiny employed during Acceptance testing, there are just some problems that are made obvious only during Deployment. Issues belonging to the first set are dealt with easily because of the plans and procedures we put in place during the Preparation stage. As an added measure, our team will be on hand to make sure contingency plans are executed accordingly.

While the second set of issues is often neglected by many IT consultancy companies, we choose to meet it head on.

We fully understand that end users are most sensitive to the major changes that accompany a new system. It is precisely for this reason why our training activities during Deployment are designed not only to educate them but also to make them fully appreciate the necessity of both the new system and the familiarisation phase they will need to go through.

The faster we can bring your end users to accept the new system, the faster they can refocus on your company’s business objectives.

Here’s what we’ll do to guarantee the smoothest Deployment process you’ve ever experienced.

  • Employ the procedure and checklist formulated during the Preparation stage.
  • Ensure all end users are well acquainted with any additional tasks they would need to perform (e.g. filling up manual logs).
  • Assess which legacy systems can still be used alongside the new technology and which ones have to be retired.
  • Supervise the installation and optimal configuration of all supporting hardware and software to make sure the likelihood of errors originating from them are brought to near-zero levels.
  • Supervise the installation and optimal configuration of the products themselves.
  • Carry out data migration tasks if necessary.
  • Organise and oversee parallel runs to check for data and report inconsistencies.
  • Conduct training sessions in a professional and well-timed manner to eliminate end-users’ feelings of agitation and to take advantage of memory absorption and retention duration as with regards to their assigned duties and responsibilities.

Transition

Do you often feel uneasy whenever the reins to a newly purchased IT system are handed over to you? Perhaps there are some issues that you feel haven’t been fully settled but, at the same time, find it too late to back out, having already invested so much time and resources.

Alright, so maybe the thought of “backing up” never crossed your mind. However, the concern of being “not yet ready” is raised by many organisations towards the tail end of most Deployment stages. This usually drags the Deployment stage into a never-ending process.

Our team of highly experienced specialists will make sure you reach this point with utmost confidence to proceed on your own.

To wrap up our comprehensive IT Systems Implementation offering, we’ll take charge of the following:

  • Verify that all deliverables, including training materials and other technical documentation, are accomplished and expected outcomes are realised.
  • Make sure all technical documentation are placed in a secure and accessible location.
  • Institute best practices to ensure the IT system becomes fully utilised and to reduce its exposure to avoidable risks.
  • Establish open communication lines with the Technical Support team to enable quick resolution of issues.
  • Ensure complete knowledge transfer has been fully achieved so that your people will spend less time calling Technical Support and more on operations contributory to business growth.
Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

Solutions to Password Overload

If only technologists had their way, passwords and PINs would have long been replaced with more innovative (and admittedly, better) security solutions. But such is not the case. Those alternative solutions, which include biometrics, smart cards, and password fobs, effective as they may be, are just way too expensive to implement.

So although passwords and PINs may not be here to stay, they certainly won’t be going away soon either.

Why keeping passwords in memory is no longer possible

A couple of decades ago, it would have been nearly impossible to crack an eight-character password using brute force. Today, however, advancements in computing power are rendering the typical passwords of the past easily decipherable, forcing us to come up with passwords that are not only much longer, but also much more complex and hence difficult to recall.

For instance, memorable words like your favourite character (e.g. ‘skywalker’) may have been acceptable then, but not anymore. Today?s security systems will encourage you to insert numbers or even other keyboard characters as a means to once again counter brute force. Hence, ‘sk5%ywa936lker@#’ may be more acceptable.

Remembering that one alone can be pretty daunting.

To further complicate matters, the number of applications that require passwords for access is much greater than before even for a single end user. Ordinary end users have to keep track of passwords for their email account, network login, workstation login, online services, and so on.

The burden is even greater for your IT admins, who have to remember a larger collection of passwords that protect business critical systems and applications. Clearly, the team in charge of your IT security will need a way to manage all these passwords.

Password management solutions

Existing password management solutions typically come in the form of software applications that store passwords. Basically, all you need to remember are your login details for the app a.k.a. the ?master password?. Once you’ve gained access inside, you can then retrieve any password you stored there.

Some of these apps are installed in portable devices like Pocket PCs, PDAs, or smartphones, which you would normally take along with you. For as long as the device stays with you, your passwords will be in safe hands. What’s more, you can retrieve them anywhere you go.

But obviously, there’s a problem. What if the device gets misplaced or stolen? Although the person who ends up with your device may not be able to gain access into the app and your passwords, neither will you. A better solution would therefore be an app that can be accessed anywhere but is not susceptible to getting lost.

Web-based password manager

A web-based password manager fits the bill. You don’t have to take it with you, but still you can access it almost anywhere. A typical web-based password manager will have all your passwords stored in a centralised, highly secure location.

If you want, you can even use your mobile password manager along with the web-based one. Ideally, your web-based password manager would have a copy of all the end-user passwords as well as the master passwords of your organisation.

With an easy to access but highly-secure web-based password manager, you no longer have to come up with passwords that (ironically) are supposed to be easy to remember but hard to crack at the the same time.

Furthermore, password managers are ideal for keeping passwords that have to be changed every-now-and-then; a requirement that’s becoming all too common in organisations bent on enforcing more stringent controls.

Ready to work with Denizon?