What Energy Management Software did for CDC

Chrome Deposit Corporation ? that’s CDC for short ? reconditions giant rollers used to finish steel and aluminium sheets in Portage, Indiana by applying grinding, texturing and plating methods. While management was initially surprised when the University of Delaware singled their plant out for energy assessment, this took them on a journey to bring energy consumption down despite being in an expansion phase.

Metal finishing and refinishing is an energy-intensive business where machines mainly do the work while workforces as small as 50 individuals tend them. Environmental impacts also need countering within a challenging environment of burgeoning natural gas and electricity prices.

The Consultant’s Recommendations

The University of Delaware was fortunate that Chrome Deposit Corporation had consistently measured its energy consumption since inception in 1986. This enabled it to pinpoint six strategies as having potential for technological and process improvements.

  • Insulate condensate tanks and pipes
  • Analyse flue gas air-fuel ratios
  • Lower compressed air pressures
  • Install stack dampers on boilers
  • Replace belts with pulleys and cogs
  • Fit covers on plant exhaust fans

CDC implemented only four of the six recommendations. This was because the boiler manufacturer did not recommend stack dampers, and the company was unable to afford certain process automation and controls.

Natural Gas Savings

The project team began by analysing stack gases from boilers used to heat chrome tanks and evaporate wastewater. They found the boilers were burning rich and that several joints in gas lines were leaking. Correcting these issues achieved an instant gas saving of 12% despite increased production.

Reduced Water Consumption

The team established that city water was used to cool the rectifiers. It reduced this by an astonishing 85% by implementing a closed-loop system and adding two chillers. This also helped the water company spend less on chemicals, and energy to drive pumps, purifiers and fans.

Summary of Benefits

Electricity consumption reduced by 18% in real terms, and natural gas by 35%. When these two savings are merged they represent an overall 25% energy saving. These benefits were implemented across the company?s six other plants, resulting in benefits CDC management never dreamed of when the University of Delaware approached them.

ecoVaro offers a similar data analytics service that is available online worldwide. We have helped other companies slash their energy bills with similarly exciting results. We?ll be delighted to share ideas that only data analytics can reveal.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Using Pull Systems to Optimise Work Flows in Call Centres

When call centres emerged towards the end of the 20th century, they deserved their name ?the sweatshops of the nineties?. A new brand of low-paid workers crammed into tiny cubicles to interact with consumers who were still trying to understand the system. Supervisors followed ?scientific management? principles aimed at maximising call-agent activity. When there was sudden surge in incoming calls, systems and customer care fell over.

The flow is nowadays in the opposite direction. Systems borrowed from manufacturing like Kanban, Pull, and Levelling are in place enabling a more customer-oriented approach. In this short article, our focus is on Pull Systems. We discuss what are they, and how they can make modern call centres even better for both sets of stakeholders.

Pull Systems from a Manufacturing Perspective

Manufacturing has traditionally been push-based. Sums are done, demand predicted, raw materials ordered and the machines turned on. Manufacturers send out representatives to obtain orders and push out stock. If the sums turn out wrong inventories rise, and stock holding costs increase. The consumer is on the receiving end again and the accountant is irritable all day long.

Just-in-time thinking has evolved a pull-based approach to manufacturing. This limits inventories to anticipated demand in the time it takes to manufacture more, plus a cushion as a trigger. When the cushion is gone, demand-pull spurs the factory into action. This approach brings us closer to only making what we can sell. The consumer benefits from a lower price and the accountant smiles again.

Are Pull Systems Possible in Dual Call Centres

There are many comments in the public domain regarding the practicality of using lean pull systems to regulate call centre workflow. Critics point to the practical impossibility of limiting the number of incoming callers. They believe a call centre must answer all inbound calls within a target period, or lose its clients to the competition.

In this world-view customers are often the losers. At peak times, operators can seem keen to shrug them off with canned answers. When things are quiet, they languidly explain things to keep their occupancy levels high. But this is not the end of the discussion, because modern call centres do more than just take inbound calls.

Using the Pull System Approach in Dual Call Centres

Most call centre support-desks originally focused are handling technical queries on behalf of a number of clients. When these clients? customers called in, their staff used operator?s guides to help them answer specific queries. Financial models?determined staffing levels and the number of ?man-hours? available daily. Using a manufacturing analogy, they used a push-approach to decide the amount of effort they were going to put out, and that is where they planted their standard.

Since these early 1990 days, advanced telephony on the internet has empowered call centres to provide additional remote services in any country with these networks. They have added sales and marketing to their business models, and increased their revenue through commissions. They have control over activity levels in this part of their business. They have the power to decide how many calls they are going to make, and within reason when they are going to make them.

This dichotomy of being passive regarding incoming traffic on the one hand, and having active control over outgoing calls on the other, opens up the possibility of a partly pull-based lean approach to call centre operation. In this model, a switching mechanism moves dual trained operators between call centre duties and marketing activities, as required by the volume of call centre traffic, thus making a pull system viable in dual call centres.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Why DevOps Matters: Things You Need to Know

DevOps creates an agile relationship between system development and operating departments, so the two collaborate in providing results that are technically effective, and work well for customers and users. This is an improvement over the traditional model where development delivers a complete design ? and then spends weeks and even months afterwards, fixing client side problems that should never have occurred.
Writing for Tech Radar Nigel Wilson explains why it is important to roll out innovation quickly to leverage advantage. This implies the need for a flexible organisation capable of thinking on its feet and forming matrix-based project teams to ensure that development is reliable and cost effective.
Skirmishes in Boardrooms
This cooperative approach runs counter to traditional silo thinking, where Operations does not understand Development, while Development treats the former as problem children. This is a natural outcome of team-centred psychology. It is also the reason why different functions pull up drawbridges at the entrance to their silos. This situation needs managing before it corrodes organization effectiveness. DevOps aims to cut through this spider web of conflict and produce faster results.

The Seeds of Collaboration

Social and personal relationships work best when the strengths of each party compensate the deficiencies of the other. In the case of development and operations, development lacks full understanding of the daily practicalities operating staff face. Conversely, operations lacks ? and should lack knowledge of the nuances of digital automation, for the very reason it is not their business.
DevOps straddles the gap between these silos by building bridges towards a co-operative way of thinking, in which matrix-teams work together to define a problem, translate it into needs and spec the system to resolve these. It is more a culture than a method. Behavioural change naturally leads to contiguous delivery and ongoing deployment. Needless to say only the very best need apply for the roles of client representative, functional tester and developer lead.

Is DevOps Worth the Pain of Change?

Breaking down silos encroaches on individual managers? turf. We should only automate to improve quality and save money. These savings often distil into organisational change. The matrix team may find itself in the middle of a catfight. Despite the pain associated with change resistance, DevOps more than pays its way in terms of benefits gained. We close by considering what these advantages are.

An Agile Matrix Structure ? Technical innovation is happening at a blistering rate. The IT industry can no longer afford to churn out inferior designs that take longer to fix than to create. We cannot afford to allow office politics to stand in the way of progress. Silos and team builds are custodians of routine and that does not sit well with development.

An Integrated Organization ? DevOps not only delivers operational systems faster through contiguous testing. It also creates an environment whereby cross-border teams work together towards achieving a shared objective. When development understands the challenges that operations faces ? and operations understands the technical limiters – a new perspective emerges of ?we are in this together?.

The Final Word ? With understanding of human dynamics pocketed, a DevOps project may be easier to commission than you first think. The traditional way of doing development – and the waterfall delivery at the end is akin to a two-phase production line, in which liaison is the weakest link and loss of quality inevitable.

DevOps avoids this risk by having parties work side-by-side. We need them both to produce the desired results. This is least until robotics takes over and there is no longer a human element in play.

New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Ready to work with Denizon?