What Is Technical Debt? A Complete Guide

You buy the latest iPhone on credit. Turn to fast car loan services to get yourself those wheels you’ve been eyeing for a while. Take out a mortgage to realise your dream of being a homeowner. Regardless of the motive, the common denominator is going into financial debt to achieve something today, and pay it off in future, with interest. The final cost will be higher than the loan value that you took out in the first place. However, debt is not limited to the financial world.

Technical Debt Definition

Technical debt – which is also referred to as code debt, design debt or tech debt – is the result of the development team taking shortcuts in the code to release a product today, which will need to be fixed later on. The quality of the code takes a backseat to issues like market forces, such as when there’s pressure to get a product out there to beat a deadline, front-run the competition, or even calm jittery consumers. Creating perfect code would take time, so the team opts for a compromised version, which they will come back later to resolve. It’s basically using a speedy temporary fix instead of waiting for a more comprehensive solution whose development would be slower.

How rampant is it? 25% of the development time in large software organisations is actually spent dealing with tech debt, according to a multiple case study of 15 organizations. “Large” here means organizations with over 250 employees. It is estimated that global technical debt will cost companies $4 trillion by 2024.

Is there interest on technical debt?

When you take out a mortgage or service a car loan, the longer that it takes to clear it the higher the interest will be. A similar case applies to technical debt. In the rush to release the software, it comes with problems like bugs in the code, incompatibility with some applications that would need it, absent documentation, and other issues that pop up over time. This will affect the usability of the product, slow down operations – and even grind systems to a halt, costing your business. Here’s the catch: just like the financial loan, the longer that one takes before resolving the issues with rushed software, the greater the problems will pile up, and more it will take to rectify and implement changes. This additional rework that will be required in future is the interest on the technical debt.

Reasons For Getting Into Technical Debt

In the financial world, there are good and bad reasons for getting into debt. Taking a loan to boost your business cashflow or buy that piece of land where you will build your home – these are understandable. Buying an expensive umbrella on credit because ‘it will go with your outfit‘ won’t win you an award for prudent financial management. This also applies to technical debt.

There are situations where product delivery takes precedence over having completely clean code, such as for start-ups that need their operations to keep running for the brand to remain relevant, a fintech app that consumers rely on daily, or situations where user feedback is needed for modifications to be made to the software early. On the other hand, incurring technical debt because the design team chooses to focus on other products that are more interesting, thus neglecting the software and only releasing a “just-usable” version will be a bad reason.

Some of the common reasons for technical debt include:

  • Inadequate project definition at the start – Where failing to accurately define product requirements up-front leads to software development that will need to be reworked later
  • Business pressure – Here the business is under pressure to release a product, such as an app or upgrade quickly before the required changes to the code are completed.
  • Lacking a test suite – Without the environment to exhaustively check for bugs and apply fixes before the public release of a product, more resources will be required later to resolve them as they arise.
  • Poor collaboration – From inadequate communication amongst the different product development teams and across the business hierarchy, to junior developers not being mentored properly, these will contribute to technical debt with the products that are released.
  • Lack of documentation – Have you launched code without its supporting documentation? This is a debt that will need to be fulfilled.
  • Parallel development – This is seen when working on different sections of a product in isolation which will, later on, need to be merged into a single source. The greater the extent of modification on an individual branch – especially when it affects its compatibility with the rest of the code, the higher the technical debt.
  • Skipping industrial standards – If you fail to adhere to industry-standard features and technologies when developing the product, there will be technical debt because you will eventually need to rework the product to align with them for it to continue being relevant.
  • Last-minute product changes – Incorporating changes that hadn’t been planned for just before its release will affect the future development of the product due to the checks, documentation and modifications that will be required later on

Types of Technical Debt

There are various types of technical debt, and this will largely depend on how you look at it.

  • Intentional technical debt – which is the debt that is consciously taken on as a strategy in the business operations.
  • Unintentional technical debt – where the debt is non-strategic, usually the consequences of a poor job being done.

This is further expounded in the Technical Debt Quadrant” put forth by Martin Fowler, which attempts to categorise it based on the context and intent:

Technical Debt Quadrant

Source: MartinFowler.com

Final thoughts

Technical debt is common, and not inherently bad. Just like financial debt, it will depend on the purpose that it has been taken up, and plans to clear it. Start-ups battling with pressure to launch their products and get ahead, software companies that have cut-throat competition to deliver fast – development teams usually find themselves having to take on technical debt instead of waiting to launch the products later. In fact, nearly all of the software products in use today have some sort of technical debt.

But no one likes being in debt. Actually, technical staff often find themselves clashing with business executives as they try to emphasise the implications involved when pushing for product launch before the code is completely ready. From a business perspective, it’s all about weighing the trade-offs, when factoring in aspects such as the aspects market situation, competition and consumer needs. So, is technical debt good or bad? It will depend on the context. Look at it this way: just like financial debt, it is not a problem as long as it is manageable. When you exceed your limits and allow the debt to spiral out of control, it can grind your operations to a halt, with the ripple effects cascading through your business.

 

Check our similar posts

Telemetry and the Survival of the Human Species

Without moisture, plants die. Without fodder, the animal food chain collapses. This is why climate change is the greatest threat humankind faces. Crop management needs timely information regarding ambient conditions, and also in the soil itself. In dry areas, online knowledge of trends in rainfall, sunlight, wind speed, leaf moisture, air temperature, relative humidity and solar radiation are indicators of soil stress that can be deadly for plants, and everything that relies on them.

As climate change bites, the need to find solutions accelerates. Drones swoop across to monitor ambient conditions, while probes sunk into plants and the earth in which they grow transmit information to big data repositories for feedback to administrators. In Australia, a remarkable cattle farmer is applying the same approach to his herds.

Nuffield scholar Rob Cook has always been on the edgy side of things. He lost his mobility in a helicopter crash in 2008 patrolling farmland but that has not deterred him. If anything, it has freed his mind to explore the potential that telemetry offers farmers in Australia. He shared this potential with the young beef producers in Roma Australia recently, and here is a summary what he said.

Being wheelchair bound he had to shift from herding with cattle dogs to a more scientific approach. He bought a farm 230 miles / 370 kilometres inland from Brisbane in a warm, temperate climate with significant rainfall even in the driest months. He uses observant software that reports on critical issues like water levels indicating animal consumption, and supplementary water flows from a central irrigation channel.

He also monitors fodder sources for dryer months, and moisture levels in food stocks. Rob is committed to making every blade of grass count. ?We even have the ability to take a photo of the cattle when they are taking a drink of water,? he explains, and that provides valuable information regarding tick and fly infestation and overall condition.

None of this would be possible for Rob Cook without telemetry, which is the process of collecting data at remote points and transmitting it to receiving equipment for analysis. Independent farmers do not have equipment to fund these analytic resources on their own, and use big data resources in a cloud to obtain reports. ecoVaro is on top of current trends. Please speak to us when you need independent advice.

?

Energy Savings Opportunity Scheme (ESOS): An Overview

Energy management is crucial to most businesses in the UK. This is primarily because energy usage substantially affects all organizations, whether large or small. The good news is that, energy costs can be controlled through improved energy efficiency. And this is exactly why Energy Savings Opportunity Scheme (ESOS) came into being ? to promote competitiveness among businesses.

Energy Savings Opportunity Scheme is the realisation of the UK Government’s ambition towards achieving the maximum potential of cost-effective energy in the economy. ESOS aims to stimulate innovation and growth, cut emissions and support a sustainable energy system.

ESOS at a Glance – Legal Perspective

The EU Energy Efficiency Directive took a major step forward on November 14, 2012 and headed towards establishing a framework to promote energy efficiency across various economic sectors. To interpret Article 8 of the Directive, the government has given birth to ESOS; requiring large enterprises to undergo mandatory energy audits and energy management systems by December 5, 2015 and at least every 4 years thereafter.

Large enterprises include UK companies that have more than 250 employees or those businesses whose annual turnover exceeds ?50 million and whose statement of financial position totals more than ?43 million. With this, over 7000 of the biggest companies in Britain will need to comply with ESOS as an approach to review their total energy use in buildings, business operations, transport and industrial processes.

Generally, ESOS is both an obligation and an opportunity. It is an obligation for the indicated target companies since they need to submit to additional regimes; focus on audit evidences; act in accordance to group structures and compliance; and observe limited penalties and note retention periods. Moreover, it is also an opportunity for companies to strive for more savings on energy projects; attempt to standardise their potential market; and effectively lower debt and legal costs.

ESOS Audits ? Looking Beyond

According to the Department of Energy and Climate Change (DECC), average first audit costs would be estimated at about ?17,000 and subsequent ones at around ?10,000. As expected, these audits will result in energy saving recommendations, of which companies need not proceed for a follow up; and substantially improve businesses in their energy management issues. DECC further states that every business that complies with ESOS could save an average of ?56,400 each year from an initial investment of ?17,000 only.

Currently, up to 6,000 UK businesses are already subject to existing CRC Carbon Reduction Scheme, Mandatory Carbon Reporting, Climate Change Levy and other compliance. This signifies that ESOS may overlap with prevailing energy efficiency legislation and may put additional pressure on energy administration. While this is true, however, ESOS holds extensive benefits. Although the scheme can be viewed as another costly compliance to environmental standards, ESOS goes straight to the bottom line and provides the organisation with competitive advantage. If large businesses act now and comply with it, they will be able to enjoy maximised payback in the long run.

Indeed, Energy Savings Opportunity Scheme is already here. It is mandatory with minimal investment. And all you have to do is act quickly, implement new improvements and earn more.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

Ready to work with Denizon?