Why Predictive Maintenance is More Profitable than Reactive Maintenance

Regular maintenance is needed to keep the equipment in your facility operating normally. All machinery has a design lifespan, and your goal is to extend this as long as possible, while maintaining optimal production levels. How you go about the maintenance matters, from routine checks to repairing the damaged component parts?all before the whole unit needs to be tossed away and a new one purchased and installed. Here, we will break down the different approaches used, and show you why more industries and businesses are turning to proactive maintenance modes as opposed to the traditional reactive approaches for their?field service operations.?

Reactive Maintenance: A wait and see game

Here, you basically wait for a problem to occur, then fix it. It’s also commonly referred to as a “Run-to-Failure” approach, where you operate the machines and systems until they break. Repairs are then carried out, restoring it to operational condition.?

At face value, it appears cost-effective, but the reality on the ground is far much different. Sure, when the equipment is new, you can expect minimal cases of maintenance. During this time, there?ll be money saved. However, as time progresses there?ll be increased wear, making reliance on a reactive maintenance approach a costly endeavour. The breakdowns are more frequent, and inconsistent as well. Unplanned expenses increase operational costs, and there will be lost productivity during the periods in which the affected machinery won’t be in operation.?

While reactive maintenance makes sense when you’re changing a faulty light bulb at home, things are more complicated when it comes to dealing with machinery in industries, or for those managing multiple residential and commercial properties. For the light bulb, it’s easier to replace it, and failure doesn’t have a ripple effect on the rest of the structures in the household. For industries, each time there is equipment failure, you end up with downtime, production can grind to a halt, and there will be increased environmental risks during equipment start-up and shutdown. If spare parts are not readily available, there will be logistical hurdles as you rush the shipping to get the component parts to the facility. Add this to overworked clients in a bit to complete the repair and to make up for lost hours and delayed customer orders.

For field service companies, more time ends up being spent. After all, there?s the need of knowing which parts needed to be attended to, where they are, and when the servicing is required. Even when you have a planned-out schedule, emergency repairs that are required will force you to immediately make changes. These ramps up the cots, affecting your operations and leading to higher bills for your client. These inconveniences have contributed to the increased reliance on?field service management platforms that leverage on data analytics and IoT to reduce the repair costs, optimise maintenance schedules, and?reduce unnecessary downtimes?for the clients.

Waiting for the machinery to break down actually shortens the lifespan of the unit, leading to more replacements being required. Since the machinery is expected to get damaged much sooner, you also need to have a large inventory of spare parts. What’s more, the damages that result will be likely to necessitate more extensive repairs that would have been needed if the machinery had not been run to failure.?

Pros of reactive maintenance

  1. Less staff required.
  2. Less time is spent on preparation.

Cons of reactive maintenance

  1. Increased downtime during machine failure.
  2. More overtime is taken up when conducting repairs.
  3. Increased expenses for purchasing and storing spare parts.?
  4. Frequent equipment replacement, driving up costs.?

This ?If it ain’t broke, don’t fix it? approach leads to hefty repair and replacement bills. A different maintenance strategy is required to minimise costs. Proactive models come into focus. Before we delve into predictive maintenance, let’s look at the preventive approach.?

Preventive Maintenance: Sticking to a timetable

Here, maintenance tasks are carried out on a planned routine?like how you change your vehicle?s engine oil after hitting a specific number of kilometres. These tasks are planned in intervals, based on specific triggers?like a period of time, or when certain thresholds are recorded by the meters. Lubrication, carrying out filter changes, and the like will result in the equipment operating more efficiently for a longer duration of time. While it doesn’t completely stop catastrophic failures from occurring, it does reduce the number of failures that occur. This translates to capital savings.??

The Middle Ground? Merits And Demerits Of Preventive Maintenance

This periodic checking is a step above the reactive maintenance, given that it increases the lifespan of the asset, and makes it more reliable. It also leads to a reduced downtime, thus positively affecting your company?s productivity. Usually, an 80/20 approach is adopted,?drawing from Pareto’s Principle. This means that by spending 80% of time and effort on planned and preventive maintenance, then reactive maintenance for those unexpected failures that pop up will only occur 20% of the time. Sure, it doesn’t always come to an exact 80/20 ratio, but it does help in directing the maintenance efforts of a company, and reducing the expenses that go into it.?

Note that there will need to be a significant investment?especially of time, in order to plan a preventive maintenance strategy, plus the preparation and delegation of tasks. However, the efforts are more cost effective than waiting for your systems and machinery to fail in order to conduct repairs. In fact, according to the US Dept. of Energy, a company can save between 12-18 % when using a preventive maintenance approach compared to reactive maintenance.

While it is better than the purely reactive approach, there are still drawbacks to this process. For instance, asset failure will still be likely to occur, and there will be the aspect of time and resource wastage when performing unneeded maintenance, especially when technicians have to travel to different sites out in the field. There is also the risk of incidental damage to machine components when the unneeded checks and repairs are being carried out, leading to extra costs being incurred.

We can now up the ante with predictive maintenance. Let’s look at what it has to offer:

Predictive Maintenance: See it before it happens

This builds on preventive maintenance, using data analytics to smooth the process, reduce wastage, and make it more cost effective. Here, the maintenance is conducted by relying on trends observed using data collected from the equipment in question, such as through vibration analysis, energy consumption, oil analysis and thermal imaging. This data is then taken through predictive algorithms that show trends and point out when the equipment will need maintenance. You get to see unhealthy trends like excessive vibration of the equipment, decreasing fuel efficiency, lubrication degradation, and their impact on your production capacities. Before the conditions breach the predetermined parameters of the equipment’s normal operating standards, the affected equipment is repaired or the damaged components replaced.??

Basically, maintenance is scheduled before operational or mechanical conditions demand it. Damage to equipment can be prevented by attending to the affected parts after observing a decrease in performance at the onset?instead of waiting for the damage to be extensive?which would have resulted in system failure. Using?data-driven?field service job management software will help you to automate your work and optimise schedules, informing you about possible future failures.

Sensors used record the condition of the equipment in real time. This information is then analysed, showing the current and future operational capabilities of the equipment. System degradation is detected quickly, and steps can be taken to rectify it before further deterioration occurs. This approach optimises operational efficiency. Firstly, it drastically reduces total equipment failure?coming close to eliminating it, extending the lifespan of the machinery and slashing replacement costs. You can have an orderly timetable for your maintenance sessions, and buy the equipment needed for the repairs. Speaking of which, this approach minimises inventory especially with regards to the spare parts, as you will be able to note the specific units needed beforehand and plan for them, instead of casting a wide net and stockpiling spare parts for repairs that may or may not be required. Repair tasks can be more accurately scheduled, minimising time wasted on unneeded maintenance.??

Preventive vs Predictive Maintenance?

How is predictive different from preventive maintenance? For starters, it bases the need for maintenance on the actual condition of the equipment, instead of a predetermined schedule. Take the oil-change on cars for instance. With the preventive model, the oil may be changed after every 5000?7500 km. Here, this change is necessitated because of the runtime. One doesn’t look at the performance capability and actual condition of the oil. It is simply changed because “it is now time to change it“. However, with the predictive maintenance approach, the car owner would ideally analyse the condition of the oil at regular intervals- looking at aspects like its lubrication properties. They would then determine if they can continue using the same oil, and extend the duration required before the next oil change, like by another 3000 kilometres. Perhaps due to the conditions in which the car had been driven, or environmental concerns, the oil may be required to be changed much sooner in order to protect the component parts with fresh new lubricant. In the long run, the car owner will make savings. The US Dept. of Energy report also shows that you get 8-12% more cost savings with the predictive approach compared to relying on preventive maintenance programs. Certainly, it is already far much more effective compared to the reactive model.?

Pros of Predictive Maintenance

  1. Increases the asset lifespan.
  2. Decreases equipment downtime.
  3. Decreases costs on spare parts and labour.
  4. Improves worker safety, which has the welcome benefit of increasing employee morale.
  5. Optimising the operation of the equipment used leads to energy savings.
  6. Increased plant reliability.

Cons of Predictive Maintenance

  1. Initial capital costs included in acquiring and setting up diagnostic equipment.
  2. Investment required in training the employees to effectively use the predictive maintenance technology adopted by the company.

The pros of this approach outweigh the cons.?Independent surveys on industrial average savings?after implementing a predictive maintenance program showed that firms eliminated asset breakdown by 70-75%, boosted production by 20-25%, and reduced maintenance costs by 25-30%. Its ROI was an average of 10 times, making it a worthy investment.

Check our similar posts

Directions Hadoop is Moving In

Hadoop is a data system so big it is like a virtual jumbo where your PC is a flea. One of the developers named it after his kid?s toy elephant so there is no complicated acronym to stumble over. The system is actually conceptually simple. It has loads of storage capacity and an unusual way of processing data. It does not wait for big files to report in to its software. Instead, it takes the processing system to the data.

The next question is what to do with Hadoop. Perhaps the question would be better expressed as, what can we do with a wonderful opportunity that we could not do before. Certainly, Hadoop is not for storing videos when your laptop starts complaining. The interfaces are clumsy and Hadoop belongs in the realm of large organisations that have the money. Here are two examples to illustrate the point.

Hadoop in Healthcare

In the U.S., healthcare generates more than 150 gigabytes of data annually. Within this data there are important clues that online training provider DeZyre believes could lead to these solutions:

  • Personalised cancer treatments that relate to how individual genomes cause the disease to mutate uniquely
  • Intelligent online analysis of life signs (blood pressure, heart beat, breathing) in remote children?s hospitals treating multiple victims of catastrophes
  • Mining of patient information from health records, financial status and payroll data to understand how these variables impact on patient health
  • Understanding trends in healthcare claims to empower hospitals and health insurers to increase their competitive advantages.
  • New ways to prevent health insurance fraud by correlating it with claims histories, attorney costs and call centre notes.

Hadoop in Retail

The retail industry also generates a vast amount of data, due to consumer volumes and multiple touch points in the delivery funnel. Skillspeed business trainers report the following emerging trends:

  • Tracing individual consumers along the marketing trail to determine individual patterns for different demographics and understand consumers better.
  • Obtaining access to aggregated consumer feedback regarding advertising campaigns, product launches, competitor tactics and so on.
  • Staying with individual consumers as they move through retail outlets and personalising their experience by delivering contextual messages.
  • Understanding the routes that virtual shoppers follow, and adding handy popups with useful hints and tips to encourage them on.
  • Detecting trends in consumer preferences in order to forecast next season sales and stock up or down accordingly.

Where to From Here?

Big data mining is akin to deep space research in that we are exploring fresh frontiers and discovering new worlds of information. The future is as broad as our imagination.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
The Better Way of Applying Benford’s Law for Fraud Detection

Applying Benford’s Law on large collections of data is an effective way of detecting fraud. In this article, we?ll introduce you to Benford’s Law, talk about how auditors are employing it in fraud detection, and introduce you to a more effective way of integrating it into an IT solution.

Benford’s Law in a nutshell

Benford’s Law states that certain data sets – including certain accounting numbers – exhibit a non-uniform distribution of first digits. Simply put, if you gather all the first digits (e.g. 8 is the first digit of ?814 and 1 is the first digit of ?1768) of all the numbers that make up one of these data sets, the smallest digits will appear more frequently than the larger ones.

That is, according to Benford’s Law,

1 should comprise roughly 30.1% of all first digits;
2 should be 17.6%;
3 should be 12.5%;
4 should be 9.7%, and so on.

Notice that the 1s (ones) occur far more frequently than the rest. Those who are not familiar with Benford’s Law tend to assume that all digits should be distributed uniformly. So when fraudulent individuals tinker with accounting data, they may end up putting in more 9s or 8s than there actually should be.

Once an accounting data set is found to show a large deviation from this distribution, then auditors move in to make a closer inspection.

Benford’s Law spreadsheets and templates

Because Benford’s Law has been proven to be effective in discovering unnaturally-behaving data sets (such as those manipulated by fraudsters), many auditors have created simple software solutions that apply this law. Most of these solutions, owing to the fact that a large majority of accounting departments use spreadsheets, come in the form of spreadsheet templates.

You can easily find free downloadable spreadsheet templates that apply Benford’s Law as well as simple How-To articles that can help you to implement the law on your own existing spreadsheets. Just Google “Benford’s law template” or “Benford’s law spreadsheet”.

I suggest you try out some of them yourself to get a feel on how they work.

The problem with Benford’s Law when used on spreadsheets

There’s actually another reason why I wanted you to try those spreadsheet templates and How-To’s yourself. I wanted you to see how susceptible these solutions are to trivial errors. Whenever you work on these spreadsheet templates – or your own spreadsheets for that matter – when implementing Benford’s Law, you can commit mistakes when copy-pasting values, specifying ranges, entering formulas, and so on.

Furthermore, some of the data might be located in different spreadsheets, which can likewise by found in different departments and have to be emailed for consolidation. The departments who own this data will have to extract the needed data from their own spreadsheets, transfer them to another spreadsheet, and send them to the person in-charge of consolidation.

These activities can introduce errors as well. That’s why we think that, while Benford’s Law can be an effective tool for detecting fraud, spreadsheet-based working environments can taint the entire fraud detection process.

There?s actually a better IT solution where you can use Benford’s Law.

Why a server-based solution works better

In order to apply Benford’s Law more effectively, you need to use it in an environment that implements better controls than what spreadsheets can offer. What we propose is a server-based system.

In a server-based system, your data is placed in a secure database. People who want to input data or access existing data will have to go through access controls such as login procedures. These systems also have features that log access history so that you can trace who accessed which and when.

If Benford’s Law is integrated into such a system, there would be no need for any error-prone copy-pasting activities because all the data is stored in one place. Thus, fraud detection initiatives can be much faster and more reliable.

You can get more information on this site regarding the disadvantages of spreadsheets. We can also tell you more about the advantages of server application solutions.

Is the GDPR Good or Bad News for Business

The European Union?s General Data Protection Act (GDPR) is a new data authority coming into force on 25 May 2018. It replaces the current Data Protection Directive 95/46/EC, while extending the remit to include the export of personal data outside the EU. It aims to give EU citizens and residents living there more control over their personal information. It also hopes to make regulatory compliance simpler for participating businesses.

The Broad Implications for Business
The GDPR puts another layer of accountability on businesses falling within its remit. It requires them to implement ?comprehensive but proportionate governance measures? including recording how they make decisions. The long-term goal is to reduce privacy infringements. In the short run, businesses without good governance may find themselves writing new policies and procedures.

Article 5 of the European Union?s General Data Protection Act lays down the following guidelines for managing personal data. This shall be ?
? Processed transparently, fairly, and lawfully
? Acquired for specific, legitimate purposes only
? Adequate, relevant and limited to essentials
? Not used for any other, incompatible purpose
? However it may be archived in the public interest
? Kept up to date with all inaccuracies corrected
? Ring-fenced when the information becomes irrelevant
? Adequately protected against unauthorised access
? Stored in a way that prevents accidental loss
Furthermore, affected businesses shall appoint a ?controller responsible for, and able to demonstrate, compliance with the principles.?

Implementing Accountability and Governance
The UK Information Commissioner?s Office has issued guidelines regarding provisions to assure governance and accountability. These are along the lines of the ?don’t tell me, show me? management approach the office has generally been following. In summary form, a business, and its controller must:
? Implement measures that assist it to ensure demonstrated compliance
? Maintain suitable, relevant records of personal data processing activities
? Appoint a dedicated data protection officer if scale makes this appropriate
? Implement technologies that ensure data protection by design
? Conduct data protection assessments and respond to results timeously

Implementing the General Data Protection Act in Ireland
The Irish Data Protection Commissioner has decided it is unnecessary to incorporate the GDPR into Irish law, since EU regulations have direct effect. The office of the Commissioner is working in tandem with data practitioners, and industry and professional bodies to raise awareness in business through 2017. It has produced a document detailing what it considers the essentials for business compliance. Briefly, these pre-requisites are:
? Ensure awareness among key personnel, and make sure they incorporate the GDPR into their planning
? Conduct an early assessment of quality management gaps, and budget for additional resources needed
? Do an audit of personal data held, to determine the origin, the necessity to hold it, and with whom shared
? Inform internal and external stakeholders of the current status, and your future plans to implement the GDPR
? Examine current procedures in the light of the new directive. Could you ?survive? a challenge from a data subject?
? Determine how you will process requests for access to the data in the future from within and outside your organization
? Assess how you currently obtain customer consent to store their data. Is this “freely given, specific, informed and unambiguous”?
? Find how you handle information from underage people. Do you have systems to verify ages and obtain guardian consent?
? Implement procedures to detect, investigate, and report data breaches to the Data Protection Commissioner within 72 hours
? Implement a culture of always assessing the effect on individual privacy before starting new initiatives

So Is the GDPR Good or Bad for Business
The GDPR should be good news for business customers. Their personal data will be more secure, and they should see their rate of spam marketing come down. The GDPR is also good news for businesses currently investing resources to protect their clients? interests. It could however, be bad news for businesses that have not been focussing on these matters. They may have a high mountain to climb to come in line with the GDPR.
Disclaimer: This article is for information only and not intended as a comprehensive guide.

Contact Us

  • (+353)(0)1-443-3807 (IRL)
  • (+44)(0)20-7193-9751 (UK)

Ready to work with Denizon?