Data Replication

Medical Data Form

These days, not many companies can continue to operate once their entire computer system goes down. All the information needed in daily operations are stored in databases while the interfaces that make use of them all come in the form of software applications.

Software applications can be rapidly reinstalled and configured for as long as the necessary programs are available. Data, however, cannot be reconstructed as quickly even with hard copies available. It is therefore necessary to store your data in a replicated setup so that when one section goes down, operations can proceed without interruption.

For instance, if a category 5 hurricane renders your main office useless, you can simply rent workstations elsewhere, connect to the Internet and continue with your usual transactions for as long as data is readily accessible.

So how do we ensure the accessibility and reliability of your data? Here’s what we’ll do:

  • Activate data replication on your database management system. If your DBMS does not support replication, we’ll migrate all your data to one that does.
  • If absolutely necessary, we can allow modernised systems to run parallel to your legacy systems and prepare both for full modernisation when you’re ready.
  • Implement fail-over technologies where applicable to provide for automatic switching to a backup data server or network from one that has just failed.

We can also assist you with the following:

Check our similar posts

Without Desktop Virtualisation, you can’t attain True Business Continuity

Even if you’ve invested on virtualisation, off-site backup, redundancy, data replication, and other related technologies, I?m willing to bet your BC/DR program still lacks an important ingredient. I bet you’ve forgotten about your end users and their desktops.

Picture this. A major disaster strikes your city and brings your entire main site down. No problem. You’ve got all your data backed up on another site. You just need to connect to it and voila! you’ll be back up and running in no time.

Really?

Do you have PCs ready for your employees to use? Do those machines already have the necessary applications for working on your data? If you still have to install them, then that’s going to take a lot of precious time. When your users get a hold of those machines, will they be facing exactly the same interface that they’ve been used to?

If not, more time will be wasted as they try to familiarise themselves. By the time you’re able to declare ?business as usual?, you’ll have lost customer confidence (or even customers themselves), missed business opportunities, and dropped potential earnings.

That’s not going to happen with desktop virtualisation.

The beauty of?virtualisation

Virtualisation in general is a vital component in modern Business Continuity/Disaster Recovery strategies. For instance, by creating multiple copies of virtualised disks and implementing disk redundancy, your operations can continue even if a disk breaks down. Better yet, if you put copies on separate physical servers, then you can likewise continue even if a physical server breaks down.

You can take an even greater step by placing copies of those disks on an entirely separate geographical location so that if a disaster brings your entire main site down, you can still gain access to your data from the other site.

Because you’re essentially just dealing with files and not physical hardware, virtualisation makes the implementation of redundancy less costly, less tedious, greener, and more effective.

But virtualisation, when used for BC/DR, is mostly focused on the server side. As we’ve pointed out earlier in the article, server side BC/DR efforts are not enough. A significant share of business operations are also dependent on the client side.

Desktop virtualisation (DV) is very similar to server virtualisation. It comes with nearly the same kind of benefits too. That means, a virtualised desktop can be copied just like ordinary files. If you have a copy of a desktop, then you can easily use that if the active copy is destroyed.

In fact, if the PC on which the desktop is running becomes incapacitated, you can simply move to another machine, stream or install a copy of the virtualised desktop there, and get back into the action right away. If all your PCs are incapacitated after a disaster, rapid provisioning of your desktops will keep customers and stakeholders from waiting.

In addition to that, DV will enable your user interface to look like the one you had on your previous PC. This particular feature is actually very important to end users. You see, users normally have their own way of organising things on their desktops. The moment you put them in front of a desktop not their own, even if it has the same OS and the same set of applications, they?ll feel disoriented and won’t be able to perform optimally.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
UK Hauliers Pull Together on ESOS

ESOS is what UK business needed, to encourage it to become more responsible for the environmental consequences of making money. Government has met with industry leaders to hammer out the finer details. Now there are heartening signs of intra-industry collaboration, for the example the FTA approach we discuss here.

The Freight Transport Association (FTA) is one of the UK?s biggest trade associations, and exists to represent the interests of companies moving goods by air, rail, sea and road. It is their representative at national, European and local level that advises them on legal compliance. In February 2015, it announced plans to help the industry comply with ESOS too.

The association has been active since the announcement of the UK?s Energy Saving Opportunity Scheme. It has engaged with government and membership through the portal of its Logistics Carbon Reduction Scheme (LCRS). The Environment Agency has singled this out as a benchmark other industries could follow.

FTA general manager for consultancy and tendering Karen Packham recently said, ?With our highly experienced and fully qualified team of transport auditors ?the FTA is best placed to offer practical advice and is able to provide specialist audits to ensure members are fully compliant ? and will gain all the benefits that the scheme has to offer.?

These co-audits with Environment Agency specialists advising, will focus on the full range of operational and supporting activities, and ensure that all haulage companies with over 250 employees do the following:

  • Assess energy use across their full spread of buildings, transport media and industrial activity
  • Examine energy-intensive pressure points and identify savings opportunities that provide financial benefit
  • Nominate an ESOS person to conduct future audits, or oversee and approve them independently
  • Report to the Environment Agency as scheme administrator per statutory intervals

Ecovaro has energy management software that turns metrics into high-level information that busy people understand. Give us a call if you are puzzling how best to present your data. We believe two heads can achieve so much more together.

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?