Firewalls

There are two main reasons why some companies are hesitant to plug into the Internet.

  1. They know they’ll be exposing their company data to outside attacks from malicious individuals and malware.
  2. They fear their employees might get too many distractions: games, porn, chats, videos, and even social networking sites.

One vital component for your overall security strategy against such concerns? A firewall.

A firewall can block unauthorised access to certain Internet services from inside your organisation as well as prevent unauthenticated access from the outside. It is also used to monitor users’ activities while they were online.

In an enterprise setting, one may expect a collection of firewalls either for providing layered protection or segmenting off different units in the organisation. Some areas only need a standard line of defence while others require more restrictions. As such, certain firewalls may have different configurations compared to others.

Naturally, the more intricate an organisation’s defence requirements get, the more complex the task of monitoring, testing and configuring the firewalls becomes. That’s why we’re here to help.

  • We’ll evaluate your network as well as the security requirements of each department under your organisation to determine which firewall architecture is most suitable.
  • To achieve maximum efficiency, we’ll point out where each firewall should be positioned.
  • We’ll work with your key personnel to make sure all firewall configurations are set and optimised with your business rules in mind.
  • If a large number of firewalls are required, we’ll help you set up a firewall configuration management system.
  • Firewalls should be regularly tested and assessed to ensure they are in line with the organisation’s security policies. We’ll perform these routine tasks as well.

Firewalls aren’t very good at defending against sophisticated viruses. There are much better solutions for malware-related vulnerabilities, and we can help you in that regard too.

Other defences we’re capable of putting up include:

Check our similar posts

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
2015 ESOS Guidelines Chapter 3 to 5 ? The ESOS Assessment

ESOS operates in tandem with the ISO 50001 (Energy Management) system that encourages continual improvement in the efficient use of energy. Any UK enterprise qualifying for ESOS that has current ISO 50001 certification on the compliance date by an approved body (and that covers the entire UK corporate group) may present this as evidence of having completed its ESOS assessment. It does however still require board-level certification, following which it must notify the Environment Agency accordingly.

The Alternate ESOS Route

In the absence of an ISO 50001 energy management certificate addressing comprehensive energy use, a qualifying UK enterprise must:

  1. Measure Total Energy Consumption in either kWh or energy spend in pounds sterling, and across the entire operation including buildings, industrial processes and transport.
  2. Identify Areas of Significant Energy Consumption that account for at least 90% of the total. The balance falls into a de minimis group that is officially too trivial to merit consideration.
  1. Consider Available Routes to Compliance. These could include ISO 500001 part-certification, display energy certificates, green deal assessments, ESOS compliant energy audits, self-audits and independent assessments
  1. Do an Internal Review to make sure that you have covered every area of significant consumption. This is an important strategic step to avoid the possibility of failing to comply completely.
  1. Appoint an Approved Lead Assessor who may be internal or external to your enterprise, but must have ESOS approval. This person confirms you have met all ESOS requirements (unless you have no de minimis exceptions).
  1. Obtain Internal Certification by one of more board-level directors. They must certify they are satisfied with the veracity of the reports. They must also confirm that the enterprise is compliant with the scheme.
  1. Notify the Environment Agency of Compliance within the deadline using the online notification system as soon as the enterprise believes is fully compliant.
  1. Assemble your ESOS Evidential Pack and back it up in a safe place. Remember, it is your responsibility to provide proof of the above. Unearthing evidence a year later it not something to look forward to.

The ESOS assessment process is largely self-regulatory, although there are checks and balances in place including lead assessor and board-level certifications. As you work through what may seem to be a nuisance remember the primary objectives. These are saving money and reducing carbon emissions. Contact ecoVaro if we can assist in any way.

Energy efficiency- succeed and benefit

Energy is neither created nor destroyed; it is only transformed. This being the law of conservation of energy, and given that the process of transforming energy is inefficient resulting in loss of usable energy in the process of transforming one form of energy into another form, Energy Efficiency finds a home.
Talking of Energy efficiency, think of how much useful energy can be obtained from a system or a particular technology. It is also about the use of technology that requires a lesser amount of energy to carry out the same task.

Energy efficiency is the responsibility of both demand side and supply side. Supply-side energy efficiency refers to a set of actions taken to ensure efficiency through the electricity supply chain. Supply side efficiency measures are about efficiency in electricity generation; be it operation and maintenance of existing equipment or upgrading existing equipment with state-of-the-art energy-efficient generating equipment.

The demand side energy efficiency on the other hand refers to the actions taken to use less/demand less energy. Think of less energy usage in relation to improvement of energy efficiency in buildings, solar water heaters, energy efficient lighting systems such as Compact Fluorescent Lamps, conducting energy audits to identify potential energy saving opportunities, efficient water heating systems and the list is endless.

Success of energy efficiency is a win ? win to YOU-ME-US – the energy consumers, to THEM the energy producers and suppliers and to our precious ENVIRONMENT.
Gain to energy suppliers: – Less energy usage and better energy usage patterns among consumers consequently reduces the customer load which reduces losses on the supply side. Less energy loss creates capacity on the system to serve more customers.

Gain to you-me-us: – Less energy usage and better energy usage patterns Benefits the customer through reduced Electricity bills / $ savings through lower bills.

Benefits to the environment: – Usage of less energy reduces use of fossil fuels, hence reduction in GHG emissions hence conserving our environment. Companies look at means to make rational use of their least efficient generating equipment. The objective is to improve the operation and maintenance of existing equipment or upgrade it with state-of-the-art energy-efficient technologies. Some companies have on-site electricity generation alternatives and thus tend to consider the supply side in addition to demand-side energy efficiency.

Ready to work with Denizon?