Disaster Recovery

Because information technology is now integrated in most businesses, a business continuity plan (BCP) cannot be complete without a corresponding disaster recovery plan (DRP). While a BCP encompasses everything needed – personnel, facilities, communications, processes and IT infrastructure – for a continuous delivery of products and services, a DRP is more focused on the IT aspects of the plan.

If you’re still not sure how big an impact loss of data can have, it’s time you pondered on the survival statistics of companies that incurred data losses after getting hit by a major disaster: 46% never recovered and 51% eventually folded after only two years.

Realising how damaging data loss can be to their entire business, most large enterprises allocate no less than 2% of their IT budget to disaster recovery planning. Those with more sensitive data apportion twice more than that.

A sound disaster recovery plan is hinged on the principles of business continuity. As such, our DRP (Disaster Recovery Plan) blueprints are aimed at getting your IT system up and running in no time. Here’s what we can do for you:

  • Since the number one turn-off against BCPs and DRPs are their price tags, we’ll make a thorough and realistic assessment of possible risks to determine what specific methods need to be applied to your organisation and make sure you don’t spend more than you should.
  • Provide an option for virtualisation to enjoy substantial savings on disaster recovery costs.
  • Provide various backup options and suggest schedules and practices most suitable for your daily transactions.
  • Offer data replication to help you achieve business continuity with the shortest allowable downtime.
  • Refer to your overall BCP to determine your organisation’s critical functions, services, and products as well as their respective priority rankings to know what corresponding IT processes need to be in place first.
  • Implement IT Security to your system to reduce the risks associated with malware and hackers.
  • Introduce best practices to make future disaster recovery efforts as seamless as possible.

We can also assist you with the following:

Check our similar posts

Sources of Carbon Emissions

Exchange of carbon dioxide among the atmosphere, land surface and oceans is performed by humans, animals, plants and even microorganisms. With this, they are the ones responsible for both producing and absorbing carbon in the environment. Nature?s cycle of CO2 emission and removal was once balanced, however, the Industrial Revolution began and the carbon cycle started to go wrong. The fact is that human activities substantially contributed to the addition of CO2 in the atmosphere.

According to statistics gathered by the Department of Energy and Climate Change, carbon dioxide comprises 82% of UK?s greenhouse gas emissions in 2012. This makes carbon dioxide the main greenhouse gas contributing to the pollution and subsequent climate change in UK.

Types of Carbon Emissions

There are two types of carbon emissions ? direct and indirect. It is easier to measure the direct emissions of carbon dioxide, which includes the electricity and gas people use in their homes, the petrol burned in cars, distance of flights taken and other carbon emissions people are personally responsible for. Various tools are already available to measure direct emissions each day.

Indirect emissions, on the other hand, include the processes involved in manufacturing food and products and transporting them to users? doors. It is a bit difficult to accurately measure the amount of indirect emission.

Sources of Carbon Emissions

The sources of carbon emissions refer to the sectors of end-users that directly emit them. They include the energy, transport, business, residential, agriculture, waste management, industrial processes and public sectors. Let’s learn how these sources contribute carbon emissions to the environment.

Energy Supply

The power stations that burn coal, oil or gas to generate electricity hold the largest portion of the total carbon emissions. The carbon dioxide is emitted from boilers at the bottom of the chimney. The electricity, produced from the fossil fuel combustion, emits carbon as it is supplied to homes, commercial establishments and other energy users.

Transport

The second largest carbon-emitting source is the transport sector. This results from the fuels burned in diesel and petrol to propel cars, railways, shipping vehicles, aircraft support vehicles and aviation, transporting people and products from one place to another. The longer the distance travelled, the more fuel is used and the more carbon is emitted.

Business

This comprises carbon emissions from combustion in the industrial and commercial sectors, off-road machinery, air conditioning and refrigeration.

Residential

Heating houses and using electricity in the house, produce carbon dioxide. The same holds true to cooking and using garden machinery at home.

Agriculture

The agricultural sector also produces carbon dioxide from soils, livestock, immovable combustion sources and other machinery associated with agricultural activities.

Waste Management

Disposing of wastes to landfill sites, burning them and treating waste water also emit carbon dioxide and contributes to global warming.

Industrial Processes

The factories that manufacture and process products and food also release CO2 , especially those factories that manufacture steel and iron.

Public

Public sector buildings that generate power from fuel combustion also add to the list of carbon emission sources, from heating to other public energy needs.

Everybody needs energy and people burn fossil fuels to create it. Knowing how our energy use affects the environment, as a whole, enables us to take a step ahead towards achieving better climate.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
What Kanban can do for Call Centre Response Times

When a Toyota industrial engineer named Taiichi Ohno was investigating ways to optimise production material stocks in 1953, it struck him that supermarkets already had the key. Their customers purchased food and groceries on a just-in-time basis, because they trusted continuity of supply. This enabled stores to predict demand, and ensure their suppliers kept the shelves full.

The Kanban system that Taiichi Ohno implemented included a labelling system. His Kanban tickets recorded details of the factory order, the delivery destination, and the process intended for the materials. Since then, Ohno?s system has helped in many other applications, especially where customer demand may be unpredictable.

Optimising Workflow in Call Centres
Optimising workflow in call centres involves aiming to have an agent pick up an incoming call within a few rings and deal with it effectively. Were this to be the case we would truly have a just-in-time business, in which operators arrived and left their stations according to customer demand. For this to be possible, we would need to standardise performance across the call centre team. Moving optimistically in that direction we would should do these three things:

  • Make our call centre operation nimble
  • Reduce the average time to handle calls
  • Decide an average time to answer callers

When we have done that, we are in a position to apply these norms to fluctuating call frequencies, and introduce ?kanbanned? call centre operators.

Making Call Centre Operations Nimble
The best place to start is to ask the operators and support staff what they think. Back in the 1960?s Robert Townsend of Avis Cars famously said, ?ask the people ? they know where the wheels are squeaking? and that is as true as ever.

  1. Begin by asking technical support about downtime frequencies, duration, and causes. Given the cost of labour and frustrated callers, we should have the fastest and most reliable telecoms and computer equipment we can find.
  1. Then invest in training and retraining operators, and making sure the pop-up screens are valuable, valid, and useful. They cannot do their job without this information, and it must be at least as tech-savvy as their average callers are.
  1. Finally, spruce up the call centre with more than a lick of paint to awaken a sense of enthusiasm and pride. Find time for occasional team builds and fun during breaks. Tele-operators have a difficult job. Make theirs fun!

Reducing Average Time to Handle Calls
Average length of contact is probably our most important metric. We should beware of shortening this at the cost of quality of interaction. To calculate it, use this formula:

Total Work Time + Total Hold Time + Total Post Call Time

Divided By

Total Calls Handled in that Period

Share recordings of great calls that highlight how your best operators work. Encourage role-play during training sessions so people learn by doing. Publish your average call-handling time statistics. Encourage individual operators to track how they are doing against these numbers. Make sure your customer information is up to date. While they must confirm core data, limit this so your operators can get down to their job sooner.

Decide a Target Time to Answer Calls
You should know what is possible in a matter of a few weeks. Do not attempt to go too tight on this one. It is better to build in say 10% slack that you can always trim in future. Once you have decided this, you can implement your Kanban system.

Introducing Kanban in Your Call Centre Operation
Monitor your rate of incoming calls through your contact centre, and adjust your operator-demand metric on an ongoing basis. Use this to calculate your over / under demand factor. Every operator should know the value on this Kanban ticket. It will tell them whether to speed up a little, or slow down a bit so they deliver the effort the call rate demands. It will also advise the supervisor when to call up reserves.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Green Business!

Carbon emissions reduction has evolved beyond simply good citizenship to being a business tool. Implementing ?green? initiatives is now a competitive weapon which defines real business opportunities and bottom line savings that can contribute significant financial value to the organisation while meeting demanding customer requirements for sustainable and low-carbon products.

Energy efficiency is a low cost resource for achieving carbon emissions reduction. Better energy efficiency simply translates to lesser carbon emissions and less energy usage which translates into saved costs.

Reduction of an organisations carbon footprint is each and everyone?s responsibility. Human activities are the key responsibility for the release of greenhouse gas emissions into the atmosphere. These include usage of electricity generated from fossil fuel, heating or driving.

At the corporate level, various measures can be instigated to increase energy efficiency. Some of these can be, having zone lighting with sensors to minimise unnecessary office lighting, timers on large IT equipment, promoting energy efficient behaviour in the office, asking staff to switch off and unplug appliances when not in use and minimising staff travel.
At the individual level; it is the small habits that count; cultivating the habit of switching off unnecessary lights, plugging out appliances that are not in use, using video conferencing or online chatting instead of having to travel to meetings, using public transport instead of taking a taxi/ personal car and using energy efficient cars.

All these initiatives assist organisations in their corporate social responsibility reports and play a role in sustainability rankings which is instrumental to customers who are increasingly considering sustainability rankings in investment decisions, while achieving the goal of cost reduction internally.

Ready to work with Denizon?