How Mid-South Metallurgical cut Energy Use by 22%

Mid-South in Murfreesboro, Tennessee operates a high-energy plant providing precision heat treatments for high-speed tools – and also metal annealing and straightening services. This was a great business to be in before the energy crisis struck. That was about the same time the 2009 recession arrived. In no time at all the market was down 30%.

Investors had a pile of capital sunk into Mid-South?s three facilities spread across 21,000 square feet (2,000 square meters) of enclosed space. Within them, a number of twenty-five horsepower compressors plus a variety of electric, vacuum and atmospheric furnaces pumped out heat 27/7, 52 weeks a year. After the company called in the U.S. Department of Energy for assistance, several possibilities presented.

Insulate the Barium Chloride Salt Baths

The barium chloride salt baths used in the heat treatment process and operating at 1600?F (870?C) were a natural choice, since they could not be cooled below 1200?F (650?C) when out of use without hardening the barium chloride and clogging up the system. The amount of energy taken to prevent this came down considerably after they covered and insulated them. The recurring annual electricity saving was $53,000.

Manage Electrical Demand & Power

The utility delivers 480 volts of power to the three plants that between them consume between 825- and 875-kilowatt hours depending on the season. Prior to the energy crisis Mid-South Metallurgical regarded this level of consumption as a given. Following on the Department of Energy survey the company replaced the laminar flow burner tips with cyclonic burner ones, and implemented a number of other modifications to enhance thermal efficiency further. The overall natural gas reduction was 20%.

Implement Large Scale Site Lighting Upgrade

The 24/7 nature of the business makes lighting costs a significant factor. Prior to the energy upgrade this came from 44 older-type 400-watt metal halide fixtures. By replacing these with 88 x 8-foot (2.5 meter) fluorescent fittings Mid-South lowered maintenance and operating costs by 52%

The Mid-South Metallurgical Trophy Cabinet

These three improvements cut energy use by 22%, reduced peak electrical demand by 21% and brought total energy costs down 18%. Mid-South continues to monitor energy consumption at each strategic point, as it continues to seek out even greater energy efficiency in conjunction with its people.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Virtualisation

Using an IT solution that can provide the fastest (but still reliable) disaster recovery process is essential for the success of any business continuity plan. Although virtualisation is still considered leading edge technology by many business continuity specialists, it definitely brings a promise that, once fulfilled, can result in the cheapest, fastest, and most comprehensive solution for business continuity.

One great advantage of virtualisation over traditional BC (Business Continuity) methods is the relatively cheaper cost needed to achieve a certain level of business continuity assurance. Thus, more companies will find it easier to reach their required minimum for BC assurance. By contrast, some BCPs (Business Continuity Plan) based on a physical environment require companies to invest more than what they are willing to in order to reach the same minimum level of assurance.

Virtual machines, which can already encapsulate your operating systems and their corresponding applications, can be transported as a file from one machine running a compatible hypervisor to another. This makes the business continuity tasks of backup, replication, and restoration simpler and faster.

As of 2008, about 54% of IT professionals in Europe were willing to implement virtualisation within a maximum of two years. Furthermore, the expected compound annual growth rate of installed virtualised servers from 2008 to 2012 is already pegged at 33%.

If you want your organisation to take advantage of the benefits of this revolutionary technology, we’d be more than willing to help you discover what it can do for you. Then once you decide to make that transition to virtualisation, we can guide you every step of the way.

  • As not all applications are suited for virtualisation (e.g. some are too demanding on I/O and memory access), we’ll start by reviewing your entire IT system to see which portions can be implemented on a virtualized environment.
  • Using virtualisation and replication, we can conduct disaster recovery tests using up-to-date data without interrupting operations in your main IT site. Running these tests will increase your team’s preparedness and will allow you to discover possible weak points.
  • Provide a simple but comprehensive protection and backup system that encapsulates not only data, but also system configurations and application installations. This kind of setup allows for faster and easier disaster recovery operations. Because of these same characteristics, you can enjoy zero downtime while performing scheduled maintenance operations.
  • Since virtual machines are hardware-independent and transparent to operating systems, we can help you run a mix of legacy and new systems as well as open source and proprietary systems, allowing for more flexibility in your BCP budgeting.

We can also assist you with the following:

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Understanding Carbon Emissions

Carbon emission is one of the hottest issues in the world of energy and environment today. While it is supposedly an essential component of the ecosystem, it has already become a large contributing factor to climate change. Carbon emission might be good but abuse of this natural process has made it harmful to people across the globe.

This series of articles aims to help people understand the intricacies of carbon emission and what society can do to efficiently manage this natural occurrence.

Natural Carbon Cycle

Two important elements in the carbon cycle are carbon, which is present in every living thing all over the world; and oxygen, which is found in the air that people breathe. When these two bond together, they create a colourless and odourless greenhouse gas known as carbon dioxide, which is then crucial to trapping infrared radiation heat in the atmosphere and also for weathering rocks.

Carbon is not only found in the atmosphere of the earth. It is also an element found in oceans, plants, coal deposits, oil and natural gas from deep down the earth?s core. Through the carbon cycle, carbon moves naturally from one portion of the earth to another. Looking at this scenario, one can see that the natural carbon cycle is a healthy way to release carbon dioxide into the air in order to be absorbed again by trees and plants.

Altered Carbon Cycle

The natural circulation of carbon among the atmosphere is vital to humankind. However, studies show that humans misuse this natural cycle and abuse it instead. Whenever people burn fossil fuels such as coal, oil and natural gas, they produce carbon dioxide ? which is an excess addition to the natural flow of carbon in the environment. The problem is that the release of carbon dioxide is much more than what plants and trees can re-absorb. People are not only adding CO2 to the atmosphere, they are also influencing the ability of natural sinks, such as forests, to remove it from the atmosphere. Humans alter the carbon cycle by contributing doubled or tripled greenhouse gas to the atmosphere, faster than nature can ever eliminate. Worst, nature?s balance is destroyed.

The Result

Greenhouse gases include carbon dioxide, methane, nitrous oxide, fluorinated gas and other gases. Although these gasses contribute to climate change, carbon dioxide is the largest greenhouse gas that humans emit. The reason why people talk about carbon emissions most, is because we produce more carbon dioxide than any other greenhouse gas.

The increasing amount of carbon emissions cause global warming to become more evident. All the extra carbon dioxide causes the earth?s overall temperature to rise as well. As the temperature increases, climate also changes unpredictably. Flood, droughts, heat waves and hurricanes are now widely experienced even in places where these phenomenon never used to happen.

To be able to reduce the risk of more severe weather conditions means burning less fossil fuels and shifting more to renewable sources. This is never easy. But, definitely, it’s worth a try.

Introduction to Matrix Management

A leader is responsible to empower his people and get the best out of them. Yet an organisational structure can either help or hamper performance. Worst, it can make or break success.

Looking at the fast-changing world of the global economy, whatsoever slows up and obstructs decision-making is a challenge. Hierarchical management is rather unattractive and functional silos are unlikable. Instead, employees desire to create teams equipped with flexibility, cooperation and coordination.

Recognising that companies have both vertical and horizontal chains of command, the matrix model is created. The concept of this principle lies in the ability to manage the collaboration of people across various functions and achieve strategic objectives through key projects.

Consider this scenario:

Ian is a sales executive of a company. His role is to sell a new product under the supervision of a product manager. The manager is expert about the product and she is accountable to coordinate the people across the organisation, making sure the product is achieved.

Moreover, Ian also reports to the sales manager who oversees his overall performance, monitors his pay and benefits and guides his personal development.

Complicated it may seem but this set-up is common to companies that seek to maximise the effect of expert product managers, without compromising the function of the staffing overhead in control of the organisation. This is a successful approach to management known as Matrix Management.

Matrix Management Defined

Matrix management is a type of organisational management wherein employees of similar skills are shared for work assignments. Simply stated, it is a structure in which the workforce reports to multiple managers of different roles.

For example, a team of engineers work under the supervision of their department head, which is the engineering manager. However, the same people from the engineering department may be assigned to other projects where they report to the project manager. Thus, while working on a designated project, each engineer has to work under various managers to accomplish the job.

Historical Background

Although some critics say that matrix management was first adopted in the Second World War, its origins can be traced more reliably to the US space programme of the 1960’s when President Kennedy has drawn his vision of putting a man on the moon. In order to accomplish the objective, NASA revolutionised its approach on the project leading to the consequent birth of ?matrix organisation?. This strategic method facilitated the energy, creativity and decision-making to triumph the grand vision.

In the 1970’s, matrix organisation received huge attention as the only new form of organisation in the twentieth century. In fact it was applied by Digital Equipment, Xerox, and Citibank. Despite its initial success, the enthusiasm of corporations with regards to matrix organisation declined in the 1980’s, largely because it was complex.

Furthermore, the drive for motivating people to work creatively and flexibly has only strengthened. And by the 1990’s, the evolution of matrix management geared towards creation and empowerment of virtual teams that focused on customer service and speedy delivery.

Although all forms of matrix has loopholes and flaws, research says that until today, matrix management is still the leading approach used by companies to achieve organisational goals.

Ready to work with Denizon?