The supply of water on planet earth is finite hence the need to conserve this precious resource. Water is a utility that is often used in and outdoors and for that reason, water conservation activities should be undertaken everywhere.
Get greener everywhere
Water saving can be achieved through various ways. Of utmost importance, fixing leaks should be undertaken in all areas. Small household leaks can add up to gallons of water lost every day. It is therefore important to check all water system fixtures and ensure that there are no leakages.
Greener bathroom habits
Turning off taps- this should be practised in the bathroom especially while shaving and brushing teeth. One could also consider using showers instead of baths since showers use less water and get into the habit of taking shorter showers.
Clean and green dishes
The kitchen is one of the areas where a lot of water is used. Some of the ways through which water can be conserved in the kitchen are:
Use of basins when washing dishes by hand
Using a dishwasher – when using the dish washer, it is important to make sure it’s fully loaded. Scraping plates instead of rinsing before loading it into the dishwasher will also go a long way in the conservation of the valuable commodity called water
Green your laundry and earn green bucks
The other area where water saving can be made is the laundry room. Washing only full loads of laundry will ensure that your washing machine is running at full efficiency hence you will be able to maximise your washer for energy efficiency. Always ensure you use the appropriate water level or load size selection on the washing machine. All these will not only save water but energy too and since savings are earnings you can smile all the way to the bank where some green bucks will be credited to your account.
Six Sigma has received much attention worldwide as a management strategy that is said to have brought about huge improvements and financial gains for such big-name companies as Allied Signal, General Electric (GE) and Motorola.
If you want to give your business the chance to attain the same resounding success, Six Sigma could be the method that will steer you towards that direction.
What is Six Sigma?
So what really is it? Six Sigma is a business management tool that was developed using the most effective quality improvement techniques from the last six decades. Basing its approach on discipline, verifiable data, and statistical calculations, Six Sigma aims to identify the causes of defects and eliminate them, thereby resulting in near-perfect products that meet or exceed customer’s satisfaction.
The core concept behind the Six Sigma method is that if an organisation can quantify the number of “defects” there are in a particular process, improvement activities can be implemented to eliminate them, and get as close to a “zero defects” scenario as possible. Defect here is defined as any process output that fails to meet customer specifications.
Six Sigma is also unique from other programs in that it calls for the creation of a special infrastructure of people within the organisation (“Champions“, “Black Belts“, “Green Belts“) who are to be expert in the methods.
Six Sigma Methodologies
When implementing Six Sigma projects, two methodologies are often employed. Although each method uses five phases each, these two are distinguished from each other using 5-letter acronyms and their specific uses.
DMAIC ? is the project methodology used to improve processes and maximise productivity of current business practices. The 5 letters stand for:
D ? Define (the problem)
M ? Measure (the main factors of the existing process)
A ??Analyse?(the information gathered to deter mine the causes of defects)
I ? Improve (the current process based on the analysis)
C ? Control (all succeeding processes so as to minimise additional defects)
DMADV – is the method most suitable if your business is looking to create new products or designs. The acronym stands for:
D ? Define (product goals as the consumer market demands)
M ? Measure (and identify product capabilities and risks)
A ??Analyse?(to create the best possible design)
D ? Design (the product or process details)
V ? Verify (the design)
How does Six Sigma differ from other quality programs?
If you think that Six Sigma is just another one of those business strategies that produce more hype than actual results, think again. Six Sigma uses three key concepts that sets it apart from other business management methods.
It is strictly a data-driven approach, where assumptions and guesswork do not figure in the decision making.
It focuses on achieving quantifiable financial results ? the bottom line ($) ? as much as giving emphasis on customer satisfaction.
It requires strong management leadership, while at the same time creating a role for every individual in the organisation.
Is Six Sigma right for your business?
While many other organisations such as Sony, Nokia, American Express, Xerox, Boeing, Kodak, Sun Micro-systems and many other blue chip companies have followed suit in adopting Six Sigma, the truth is, any company — whether you have a large manufacturing corporation, or a small business specialising in customer service.
Certainly, there is a lot more to Six Sigma than what you can probably absorb in one sitting or reading.
With our wide range of business management consultancy services, we can help you understand the Six Sigma method in the context of your business. We can also help you establish your improvement goals, set up your program, and train your own team of “champions” who can lead in implementing your Six Sigma goals.
Find out more about our Quality Assurance services in the following pages:
The easiest way for an external threat to get to your private data is through your network. The easiest way to eliminate that threat? Get your data out of the network. Of course, we know you wouldn’t want to do that. We also know that while you may want to sniff every packet for anything suspicious, you wouldn’t want your network to crawl either.
That’s why we’re offering to put up the most efficient checkpoints on every route that leads into and out of your system.
So what can you expect from our brand of network security?
Review of your policies and processes for weaknesses – If we see a loophole, we’ll recommend modifications wherever necessary.
Protection for your applications and infrastructure – Since we’re familiar with both software and hardware-based protection systems, we can recommend which type is best suited for your setup.
Automated identification of business and mission critical applications – They’ll be given priority in your network to ensure bandwidth allocation is optimised.
Automated network audits and vulnerability management – Tired of getting prompted by pesky vulnerability notices and don’t know what to do with them? Well, that’s why we’re here.
Customisable security reports that contain only relevant and accurate data.
For many people within the UK, water is not really something to worry about. Surely enough of it falls out the sky throughout the year that it does feel highly unlikely that we?ll ever run out of it. There certainly does seem to be an abundance of Branded Water available in plastic bottles on our supermarket shelves.
Water, water, every where, And all the boards did shrink; Water, water, every where, Nor any drop to drink.
Despite this, Once-unthinkable water crises are becoming commonplace. If you consider that In England and Wales, we use 16 billion litres of clean drinking water every day ? that’s equivalent to 6,400 Olympic sized swimming pools.
Currently, water companies can provide slightly more than we need ? 2 billion litres are available above and beyond what we’re using. In some areas, though, such as south east England, there is no surplus and, as such, these regions are more likely to face supply restrictions in a dry year.
If we take little moment to reflect on some of the most notable water related stories over the past few years, we’ll start to get a picture of just how real the potential and the threat of water shortages can be.
Reservoirs in Chennai, India?s sixth-largest city, are nearly dry right now. Last year, residents of Cape Town, South Africa narrowly avoided their own Day Zero water shut-off.
It was only year before that, Rome rationed water to conserve scarce resources.
Climate change is likely to mean higher temperatures which may drive up the demand for water (alongside population growth) and increase evaporation from reservoirs and water courses during spring and summer.
The impact of climate change on total rainfall is uncertain, but the rain that does fall is likely to arrive in heavier bursts in winter and summer. Heavier rain tends to flow off land more quickly into rivers and out to sea, rather than recharging groundwater aquifers.
A greater chance of prolonged dry periods is also conceivable. This combined with the harsh reality that no human population can sustain itself without sufficient access to fresh water.
If present conditions continue, 2 out of 3 people on Earth will live within a water-stressed zone by 2025
What is water stress?
Water stress is a term used to describe situation when demand for water is greater than the amount of water available at a certain period in time, and also when water is of poor quality and this restricts its usage. Water stress means deterioration in both the quantity of available water and the quality of available water due to factors affecting available water.
Water stress refers to the ability, or lack thereof, to meet human and ecological demand for water. Compared to scarcity, water stress is a more inclusive and broader concept.
Water Stress considers several physical aspects related to water resources, including water scarcity, but also water quality, environmental flows, and the accessibility of water.
Supply and Demand
Major factors involved when water scarcity strikes is when a growing populations demand for water exceeds the areas ability to service that need.
Increased food production and development programs also lead to increased demand for water, which ultimately leads to water stress.
Increased need for agricultural irrigation in order to produce more crops or sustain livestock are major contributors to localised water stress.
Overconsumption
The demand for water in a given population is fairly unpredictable. Primarily, based on the fact that you can never accurately predict human behaviour and changes in climate.
If too many people are consuming more water than they need because they mistakenly believe that water is freely available and plentiful, then water stress could eventually occur.
This is also linked to perceived economic prosperity of a give region. Manufacturing demand for water can have huge impact regardless whether water is actively used within the manufacturing process or not.
Water Quality
Water quality in any given area is never static. Water stress could happen as a result of rising pollution levels having a direct impact on water quality.
Water contamination happens when new industries either knowingly or unknowingly contaminate water with their industrial practices.
Largely, this can happen and frequently does so because these industries do not take effective control of monitoring and managing their impact on communal water supplies. Incorrectly assuming this is the responsibility of an additional third party like the regional water company.
The truth is, water quality and careful monitoring of it is all of our responsibility.
Water Scarcity
Simple increases in demand for water can in itself contribute to water scarcity. However, these are often preceded by other factors like poverty or just the natural scarcity of water in the area.
In many instances, the initial locations of towns or cities were not influenced by the close proximity of natural resources like water, but rather in pursuit of the extraction of other resources like Gold, Coal or Diamonds.
For Instance, Johannesburg, South Africa is the largest City in South Africa and is one of the 50 largest urban areas in the world. It is also located in the mineral rich Witwatersrand range of hills and is the centre of large-scale gold and diamond trade.
Johannesburg is also one of the only major cities of the world that was not built on a river or harbour. However, it does have streams that contribute to two of Southern Africas mightiest rivers – Limpopo and the Orange rivers. However, most of the springs from which many of these streams emanate are now covered in concrete!
Water Stress and Agriculture
Peter Buss, co-founder of Sentek Technology calls ground moisture a water bank and manufactures ground sensors to interrogate it. His hometown of Adelaide is in one of the driest states in Australia. This makes monitoring soil water even more critical, if agriculture is to continue. Sentek has been helping farmers deliver optimum amounts of water since 1992.
The analogy of a water bank is interesting. Agriculturists must ?bank? water for less-than-rainy days instead of squeezing the last drop. They need a stream of real-time data and utilize cloud-based storage and processing power to curate it.
Sentek?s technology can be found in remote places like Peru?s Atacamba desert and the mountains of Mongolia, where it supports sustainable floriculture, forestry, horticulture, pastures, row crops and viticulture through precise delivery of scarce water.
This relies on precision measurement using a variety of drill and drop probes with sensors fixed at 4? / 10cm increments along multiples of 12? / 30cm up to 4 times. These probe soil moisture, soil temperature and soil salinity, and are readily repositioned to other locations as crops rotate.
Peter Buss is convinced that measurement is a means to an end and only the beginning. ?Too often, growers start watering when plants don’t really need it, wasting water, energy, and labour. By accurately monitoring water can be saved until when the plant really needs it.
Peter also emphasises that crop is the ultimate sensor, and that ?we should ask the plant what it needs?.
This takes the debate a stage further. Water wise farmers should plant water-wise crops, not try to close the stable door after the horse has bolted and dry years return.
The South Australia government thinks the answer also lies in correct farm dam management. It wants farmers to build ones that allow sufficient water to bypass in order to sustain the natural environment too.
There is more to water management than squeezing the last drop. Soil moisture goes beyond measuring for profit. It is about farming sustainably using data from sensors to guide us.
Ecovaro is ahead of the curve as we explore imaginative ways to exploit the data these provide for the common good of all.
A Quarter of the World?s Population, Face High Water Stress
Data from WRI?s Aqueduct tools reveal that 17 countries? home to one-quarter of the world?s population?face ?extremely high? levels of baseline water stress, where irrigated agriculture, industries and municipalities withdraw more than 80% of their available supply on average every year.
Water stress poses serious threats to human lives, livelihoods and business stability. It’s poised to worsen unless countries act: Population growth, socioeconomic development and urbanization are increasing water demands, while climate change can make precipitation and demand more variable.
How to manage water stress
Water stress is just one dimension of water security. However, like any challenge, its outlook depends on adequate monitoring and management of environmental data.
Even countries with relatively high water stress have effectively secured their water supplies through proper management by leveraging the knowledge they have garnered by learning from the data they gathered.
3 ways to help reduce water stress
In any geography, water stress can be reduced by measures ranging from common sense to innovative technology solutions.
There are countless solutions, but here are three of the most straightforward:
1. Increase agricultural efficiency: The world needs to make every drop of water go further in its food systems. Farmers can use seeds that require less water and improve their irrigation techniques by using precision watering rather than flooding their fields.
Businesses need to increase investments to improve water productivity, while engineers develop technologies that improve efficiency in agriculture.
2. Invest in grey and green infrastructure: D Data produced by Aqueduct Alliance – shows that water stress can vary tremendously over the year. WRI and the World Bank?s researchshows that built infrastructure (like pipes and treatment plants) and green infrastructure (like wetlands and healthy watersheds) can work in tandem to tackle issues of both water supply and water quality.
3. Treat, reuse and recycle: We need to stop thinking of wastewater as waste.
Treating and reusing it creates a ?new? water source.
There are also useful resources in wastewater that can be harvested to help lower water treatment costs. For example, plants in Xiangyang, China and Washington, D.C. reuse or sell the energy- and nutrient-rich byproducts captured during wastewater treatment.
Summary
The data is undeniably clear, there are very worrying trends in water.
Businesses and other other organisations need to start taking action now and investing in better monitoring and management, we can solve water issues for the good of people, economies and the planet. We collectively cannot kick this can down the road any further, or assume that this problem will be solved by others.
It is time, for a collective sense of responsibility and for everyone to invest in future prosperity of our Planet as a collective whole. Ecological preservation should be at the forefront of all business plans because at the end of the day profit is meaningless without an environment to enjoy it in!