Using Pull Systems to Optimise Work Flows in Call Centres

When call centres emerged towards the end of the 20th century, they deserved their name ?the sweatshops of the nineties?. A new brand of low-paid workers crammed into tiny cubicles to interact with consumers who were still trying to understand the system. Supervisors followed ?scientific management? principles aimed at maximising call-agent activity. When there was sudden surge in incoming calls, systems and customer care fell over.

The flow is nowadays in the opposite direction. Systems borrowed from manufacturing like Kanban, Pull, and Levelling are in place enabling a more customer-oriented approach. In this short article, our focus is on Pull Systems. We discuss what are they, and how they can make modern call centres even better for both sets of stakeholders.

Pull Systems from a Manufacturing Perspective

Manufacturing has traditionally been push-based. Sums are done, demand predicted, raw materials ordered and the machines turned on. Manufacturers send out representatives to obtain orders and push out stock. If the sums turn out wrong inventories rise, and stock holding costs increase. The consumer is on the receiving end again and the accountant is irritable all day long.

Just-in-time thinking has evolved a pull-based approach to manufacturing. This limits inventories to anticipated demand in the time it takes to manufacture more, plus a cushion as a trigger. When the cushion is gone, demand-pull spurs the factory into action. This approach brings us closer to only making what we can sell. The consumer benefits from a lower price and the accountant smiles again.

Are Pull Systems Possible in Dual Call Centres

There are many comments in the public domain regarding the practicality of using lean pull systems to regulate call centre workflow. Critics point to the practical impossibility of limiting the number of incoming callers. They believe a call centre must answer all inbound calls within a target period, or lose its clients to the competition.

In this world-view customers are often the losers. At peak times, operators can seem keen to shrug them off with canned answers. When things are quiet, they languidly explain things to keep their occupancy levels high. But this is not the end of the discussion, because modern call centres do more than just take inbound calls.

Using the Pull System Approach in Dual Call Centres

Most call centre support-desks originally focused are handling technical queries on behalf of a number of clients. When these clients? customers called in, their staff used operator?s guides to help them answer specific queries. Financial models?determined staffing levels and the number of ?man-hours? available daily. Using a manufacturing analogy, they used a push-approach to decide the amount of effort they were going to put out, and that is where they planted their standard.

Since these early 1990 days, advanced telephony on the internet has empowered call centres to provide additional remote services in any country with these networks. They have added sales and marketing to their business models, and increased their revenue through commissions. They have control over activity levels in this part of their business. They have the power to decide how many calls they are going to make, and within reason when they are going to make them.

This dichotomy of being passive regarding incoming traffic on the one hand, and having active control over outgoing calls on the other, opens up the possibility of a partly pull-based lean approach to call centre operation. In this model, a switching mechanism moves dual trained operators between call centre duties and marketing activities, as required by the volume of call centre traffic, thus making a pull system viable in dual call centres.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Check our similar posts

Matrix Management: Benefits and Pitfalls

Matrix management brings together managers and employees from different departments to collaborate with each other towards the accomplishment of the organizational goals. As much as it is beneficial, matrix management also has limitations. Hence, companies should understand its benefits and pitfalls before implementing this management technique.

Benefits

The following are some of the advantages of matrix management:

Effective Communication of Information

Because of the hybrid nature of the matrix structure, it enables different departments to closely work together and communicate frequently in order to solve project issues. This leads to a proficient information exchange among leaders and subordinates. Consequently, it results to developed strategies, enhanced performance and quick productivity.

Efficient Use of Resources

Resources can be used efficiently in the organisation since it can be shared among functions and projects. As the communication line is more open, the valuable knowledge and highly skilled resources are easily distributed within the organisation.

Increased Motivation

The matrix structure promotes democracy. And with the employees working on a team, they are motivated to perform their duties better. The opinions and expertise of the employees are brought to the table and considered by the managers before they make decisions. This leads to employee satisfaction, empowerment and improved performance.

Flexibility

Since the employees communicate with each other more frequently, decision making becomes speedy and response is adaptive. They can easily adjust with diverse situations that the company encounters.

Skills Development

Matrix employees are pooled out for work assignments, even to projects that are not necessarily in line with their skill background. With this approach to management, employees have the chance to widen their skills and expertise.

Discipline Retention

One significant advantage of matrix management is that it enables the employees to maintain their skills in functional areas while working with multidisciplinary projects. Once the project is completed and the team wraps up, the members remain sharp in their discipline technically and return to their home functions.

Pitfalls

Here are some disadvantages of matrix management:

Power Struggle

In the matrix structure, there is always tension between the functional and project manager. Although their intent is polite, their conflicting demands and competition for control over the same resources make it more difficult.

Internal Complexity

Having more than one manager, the employees might become confused to who their immediate leader is. The dual authority can lead to internal complexity and possible communication problems. Worst, employee dissatisfaction and high employee turnover.

Heightened Conflict

In any given situation where people and resources are shared across projects, there would always be competition and conflict. When these issues are prolonged, conflicts will heightened and will lead to more internal problems.

Increased Stress

For the employees, being part of a matrix structure can be stressful. Their commitment is divided among the projects and their relationship with multiple managers requires various adjustments. Increased stress can negatively affect their performance in the long run.

Excessive Overhead Expenses

Overhead administrative costs, such as salaries, increase in a matrix structure. More expenses, more burden to the organisation. This is a challenge to matrix management that leaders should consider carefully.

These are just some of the advantages and disadvantages of matrix management. The list could go on, depending on the unique circumstances that organisations have. The key is that when you decide to implement matrix management, you should recognise how to take full advantage of its benefits and understand how to lessen, if not eradicate, the pitfalls of this approach to management.

Operational Efficiency Initiatives

When was the last time you checked your technology spending against your IT infrastructure’s contribution to the bottom line?

Chances are, what’s happening underneath all those automated processes, expensive hardware, and fancy graphical user interfaces is not doing your bottom line any good.

If you don’t keep a watchful eye, your IT operations can easily nurture a lot of wastage and unnecessary costs. Underutilised servers, duplicate processes, poorly managed bandwidths, and too much complexity are among the common culprits.

For minor problems, we can eliminate wastage by setting up some technology enhancements, instilling best practices, and performing a few tweaks. However, if you’re not adequately trained on how to go about with it, your band-aid solutions can add more complexity to the mix.

Of course, there will always come a time when you will have to spend on new technologies to maintain the overall efficiency of your IT infrastructure. Whether you intend to purchase new hardware or software applications or build an entirely new infrastructure, the sheer cost of such undertakings warrants seeking expert advice.

Failure to do so can result in fragmented resources lacking in cohesiveness, which don’t contribute to efficiency at all.

Our solutions for improving operational efficiencies cover the entire spectrum: from planning what to buy, optimising what you’ve already bought, to making your team comfortable with them all. Please find time to view our solutions below and uncover ways to drive those profits up even as you work within your budget.

 

More Operational Review Blogs

 

Carrying out an Operational Review

 

Operational Reviews

 

Operational Efficiency Initiatives

 

Operational Review Defined

 

FUJIFILM Cracks the Energy Code

FUJIFILM was in trouble at its Dayton, Tennessee plant in 2008 where it produced a variety of speciality chemicals for industrial use. Compressed-air breakdowns were having knock-on effects. The company decided it was time to measure what was happening and solve the problem. It hoped to improve reliability, cut down maintenance, and eliminate relying on nitrogen for back-up (unless the materials were flammable).

The company tentatively identified three root causes. These were (a) insufficient system knowledge within maintenance, (b) weak spare part supply chain, and (c) generic imbalances including overstated demand and underutilised supply. The maintenance manager asked the U.S. Department of Energy to assist with a comprehensive audit of the compressed air system.

The team began on the demand side by attaching flow meters to each of several compressors for five days. They noticed that – while the equipment was set to deliver 120 psi actual delivery was 75% of this or less. They found that demand was cyclical depending on the production phase. Most importantly, they determined that only one compressor would be necessary once they eliminated the leaks in the system and upgraded short-term storage capacity.

The project team formulated a three-stage plan. Their first step would be to increase storage capacity to accommodate peak demand; the second would be to fix the leaks, and the third to source a larger compressor and associated gear from a sister plant the parent company was phasing out. Viewed overall, this provided four specific goals.

  • Improve reliability with greater redundancy
  • Bring down system maintenance costs
  • Cut down plant energy consumption
  • Eliminate nitrogen as a fall-back resource

They reconfigured the equipment in terms of lowest practical maintenance cost, and moved the redundant compressors to stations where they could easily couple as back-ups. Then they implemented an online leak detection and repair program. Finally, they set the replacement compressor to 98 psi, after they determined this delivered the optimum balance between productivity and operating cost.

Since 2008, FUJIFILM has saved 1.2 million kilowatt hours of energy while virtually eliminating compressor system breakdowns. The single compressor is operating at relatively low pressure with attendant benefits to other equipment. It is worth noting that the key to the door was measuring compressed air flow at various points in the system.

ecoVaro specialises in analysing data like this on any energy type.?

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK

Ready to work with Denizon?