New Focus on Monitoring Soil

There is nothing new about monitoring soil in arid conditions. South Africa and Israel have been doing it for decades. However climate change has increased its urgency as the world comes to terms with pressure on the food chain. Denizon decided to explore trends at the macro first world level and the micro third world one.

In America, the Coordinated National Soil Moisture Network is going ahead with plans to create a database of federal and state monitoring networks and numerical modelling techniques, with an eye on soil-moisture database integration. This is a component of the National Drought Resilience Partnership that slots into Barrack Obama?s Climate Action Plan.

This far-reaching program reaches into every corner of American life to address the twin scourges of droughts and inundation, and the agency director has called it ?probably ?… one of the most innovative inter-agency tools on the planet?. The pilot project involving remote moisture sensing and satellite observation targets Oklahoma, North Texas and surrounding areas.

Africa has similar needs but lacks America?s financial muscle. Princeton University ecohydrologist Kelly Caylor is bridging the gap in Kenya and Zambia by using cell phone technology to transmit ecodata collected by low-cost ?pulsepods?.

He deploys the pods about the size of smoke alarms to measure plants and their environment.?Aspects include soil moisture to estimate how much water they are using, and sunlight to approximate the rate of photosynthesis. Each pod holds seven to eight sensors, can operate on or above the ground, and transmits the data via sms.

While the system is working well at academic level, there is more to do before the information is useful to subsistence rural farmers living from hand to mouth. The raw data stream requires interpretation and the analysis must come through trusted channels most likely to be the government and tribal chiefs. Kelly Caylor cites the example of a sick child. The temperature reading has no use until a trusted source interprets it.

He has a vision of climate-smart agriculture where tradition gives way to global warming. He involves local farmers in his research by enrolling them when he places pods, and asking them to sms weekly weather reports to him that he correlates with the sensor data. As trust builds, he hopes to help them choose more climate-friendly crops and learn how to reallocate labour as seasons change.

Check our similar posts

Key Steps to Complying with ESOS

Energy Savings Opportunity Scheme has already been launched. In fact, it is by now in its initial phase. However, many businesses are still not aware of the new scheme, especially those who are covered by the qualifications for ESOS. To help them understand what they need to do in compliance to the energy efficiency strategy, here are key steps they can follow along the way.

Measure Overall Energy Consumption

The first step to complying with ESOS is to make an initial estimate of the business? energy consumption. This includes measuring the use of electricity, renewable energy, combustible fuels and all other forms of energy consumed whether in buildings, transports and industrial processes.

Three important factors to consider are the measurement units used, the reference period and quality of data. Energy units, such as MWh and GJ, or energy expenditure costs should be applied. Business enterprises should also do the initial measurement within a reference period of 12 months. Moreover, data collected should be verifiable at hand.

Identify Areas of Significant Energy Consumption

When the total energy consumption for all the activities and assets has already been estimated, it’s then time to identify what areas in the organisation comprise the significant portion of the overall energy usage. The areas recognised should cover at least 90% of the overall consumption. Meaning to say, ESOS participants have the chance to omit 10% of the energy consumption and instead focus on the 90%. This would ensure that subsequent energy audits will be cost-effective and proportionate.

Consider and Choose Compliance Routes

In order to comply with ESOS, qualified businesses should consider what compliance routes to take. These routes include taking series of energy audits, operating and implementing a certified ISO 50001 energy management system, acquiring Display Energy Certificates (DECs) and working with Green Deal assessments. Whichever route the business takes, one should maintain credible evidences, along with helpful documents, to certify their compliance.

Report the Compliance

Except when the large enterprise covers all the significant areas of energy consumption by means of ISO 50001 certification, one should appoint a lead assessor to supervise, conduct and review the organisation’s chosen ESOS compliance route. In this case, the approved assessments should then be signed off at board level to ensure that the conclusions and recommendations for energy savings are properly carried. To confirm their compliance, the business should submit a formal notification to the Environment Agency.

Because ESOS is not just an opportunity but also an obligation, it designated compliance bodies and gave them the authority to file civil penalties towards those who fail to comply with the scheme. Not only that, these appropriate authorities have the right to publish information about non-compliant enterprises including their name, details of non-compliance and corresponding penalty amount. Among these UK compliance bodies are Natural Resources Wales, Environment Agency in England, The Scottish Environment Protection Agency (SEPA) and Northern Ireland Environment Agency.

So, if you are covered with the ESOS qualifications, make sure to be informed. As the famous saying goes, ?Ignorance of the law excuses no one.? Likewise, awareness of ESOS is a responsibility every large business in UK should give importance to.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
How Bombardier Inc. scored a Bulls Eye

When travelling anywhere in the world on land, sea or air, chances are, you will travel courtesy of something made by aerospace and transportation company Bombardier based in Montreal, Canada. In 2009, it set itself the goal of carbon neutrality by 2020. In other words, it hoped to remove as much carbon dioxide from the atmosphere as it was putting in.

By 2012, Bombardier concluded it was not going to become carbon neutral by 2020 at its current rate of progress. It discounted purchasing carbon offsets because it believed it would serve its interests better by introducing new energy-saving products to market faster. That way, it would achieve its objectives vicariously through the decisions of its customers. But that was not all that forward-thinking Bombardier did. It also set itself the following inward-facing objectives:

  • Reduce carbon footprint through efficient use of energy and less emissions
  • Involve the Bombardier workforce to raise awareness of behaving responsibly
  • Implement sustainable initiatives to further reduce the company carbon footprint

Specific Examples

At its Wichita site, Bombardier (a) fitted a white roof and insulation reducing summer energy consumption by 40%, (b) added an energy recovery wheel to balance air circulation, and (c) introduced skylights with integrated controllers to lower energy consumption by lighting.

At Mirabel, it enhanced the flue-gas management system by adding a pressure differential damper.

At Belfast, Bombardier (a) optimised HVAC systems to reduce pressure on chilling and air-handling plants, (b) installed solar panels on the roof, and (c) obtained approval for a waste-to-energy plant that will convert 120,000 tonnes of non-recyclable waste material annually.

By the end of 2013, Bombardier had already beaten its immediate targets by:

  • Reducing energy consumption by 11% against 2009
  • Reducing greenhouse gas emission by 23% against 2009
  • Reducing water consumption by 6% against 2012

Future Plans

Bombardier will never stop striving to reach its goal of carbon neutrality by 2020. It has a number of other projects in the pipeline waiting for scarce resources to fund them. During 2014, it continued with energy efficient upgrades at its French, Hungarian, Polish, Swiss, and UK plants.

These include consumption monitoring systems, LEDs for workshop lighting, new heating systems, and outdoor energy-saving tower lighting. The monitoring is important because it helps Bombardier focus effort, and provides measured proof of progress.

Contact Us

  • (+353)(0)1-443-3807 – IRL
  • (+44)(0)20-7193-9751 – UK
Saving Energy Step 2 ? More Practical Ideas

In my previous blog, we wrote about implementing a management system. This boils down to sharing a common vision up and down and across the organisation, measuring progress, and pinning accountability on individuals. This time, we would like to talk about simple things that organisations can do to shrink their carbon footprints. But first let’s talk about the things that hold us back.

When we take on new clients we sometimes find that they are baffled by what I call energy industry-speak. We blame this partly on government. We understand they need clear definitions in their regulations. It’s just a pity they don’t use ordinary English when they put their ideas across in public forums.

Consultants sometimes seem to take advantage of these terms, when they roll words like audit, assessment, diagnostic, examination, survey and review across their pages. Dare we suggest they are trying to confuse with jargon? We created ecoVaro to demystify the energy business. Our goal is to convert data into formats business people understand. As promised, here are five easy things your staff could do without even going off on training.

  1. Right-size equipment? outsource peak production in busy periods, rather than wasting energy on a system that is running at half capacity mostly.
  2. Re-Install equipment to OEM specifications ? individual pieces of equipment need accurate interfacing with larger systems, to ensure that every ounce of energy delivers on its promise.
  3. Maintain to specification ? make sure machine tools are within limits, and that equipment is well-lubricated, optimally adjusted and running smoothly.
  4. Adjust HVAC to demand ? Engineers design heating and ventilation systems to cope with maximum requirements, and not all are set up to adapt to quieter periods. Try turning off a few units and see what happens.
  5. Recover Heat ? Heat around machines is energy wasted. Find creative ways to recycle it. If you can’t, then insulate the equipment from the rest of the work space, and spend less money cooling the place down.

Well that wasn’t rocket science, was it? There are many more things that we can do to streamline energy use, and coax our profits up. This is as true in a factory as in the office and at home. The power we use is largely non-renewable. Small savings help, and banknotes pile up quickly.

Ready to work with Denizon?